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Abstract

The Wigner formulation of quantum mechanics is a very intuitive approach
which allows the comprehension and prediction of quantum mechanical phe-
nomena in terms of quasi-distribution functions. In this review, our aim is to
provide a detailed introduction to this theory along with a Monte Carlo method
for the simulation of time-dependent quantum systems evolving in a phase-
space. This work consists of three main parts. First, we introduce the Wigner
formalism, then we discuss in details the Wigner Monte Carlo method and, fi-
nally, we present practical applications. In particular, the Wigner model is first
derived from the Schrödinger equation. Then a generalization of the formal-
ism due to Moyal is provided, which allows to recover important mathematical
properties of the model. Next, the Wigner equation is further generalized to the
case of many-body quantum systems. Finally, a physical interpretation of the
negative part of a quasi-distribution function is suggested. In the second part,
the Wigner Monte Carlo method, based on the concept of signed (virtual) parti-
cles, is introduced in details for the single-body problem. Two extensions of the
Wigner Monte Carlo method to quantum many-body problems are introduced,
in the frameworks of time-dependent density functional theory and ab-initio
methods. Finally, in the third and last part of this paper, applications to single-
and many-body problems are performed in the context of quantum physics and
quantum chemistry, specifically focusing on the hydrogen, lithium and boron
atoms, the H2 molecule and a system of two identical Fermions. We conclude
this work with a discussion on the still unexplored directions the Wigner Monte
Carlo method could take in the next future.
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1. Introduction

The necessity of a quantum theory was raised by a series of experimental
observations in the realm of extremely small objects such as electrons and other
elementary particles, atoms and molecules, which could not be explained in
classical terms at all. Concepts such as particle-wave duality and energy quan-
tization have, indeed, no classical counterpart and the physical evidences for
such phenomena were puzzling a whole community of scientists. Eventually,
the remarkable (and stupendous) work assembled by the theoretical physicists
of that time brought to a successful set of rules able to explain (and predict)
the observed features of quantum systems. This achievement was in great part
made possible thanks to the work of E. Schrödinger, summarizing the descrip-
tion of quantum systems in terms of probability amplitudes, or wave-functions,
at that time a revolutionary concept. A physical interpretation to this equa-
tion was provided, known as the standard or Copenhagen interpretation. This
theory remains, to this day, the most rigorously tested theory in physics.

Right after the birth of the Schrödinger equation, other formulations (and
interpretations) of quantum mechanics appeared, sheding light on aspects that
were hardly understandable in the standard formalism. In this perspective,
the work of E. Wigner stands out among these alternative (but completely
equivalent) formulations of quantum mechanics. Indeed it is an intuitive model
which provides a direct connection between classical and quantum physics, due
to its strong similarities with classical statistical mechanics. As a matter of
fact, the Wigner approach renders quantum mechanics a more natural theory,
describing quantum objects in terms of quasi-distribution functions.

Despite the advantage of being intuitive, only in recent years we have wit-
nessed a growth of interest in the Wigner formulation of quantum mechanics.
One plausible explanation for this is the fact that the Wigner equation has
represented an incredibly challenging mathematical task for years, being a par-
tial integro-differential equation where the unknown is a function defined over
a 2 × d × n dimensional phase-space, where d is the dimensionality of space
(d = 1, 2, 3) and n is the number of involved particles. Only recently, Monte
Carlo techniques have been implemented which overcome the many problems
involved in the resolution of such model.

In this review endeavor, the focal point will be the work of E. Wigner and
the related Monte Carlo techniques which allow practical quantum simulations
in the phase-space formulation. To this aim, we start this section by introducing
some of the aspects of the necessity and birth of a quantum theory. Afterwards,
we proceed with the tenets of the Schrödinger formalism and comment shortly
on the Copenhagen interpretation. We, then, discuss on the role Monte Carlo
methods have played in the field of applied physics and present the lastest de-
velopments in the field of time-dependent, multi-dimensional and full quantum
simulations in the Wigner formalism. In the following we suppose the reader
to be familiar with the Schrödinger formulation of quantum mechanics and the
Dirac notation.
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1.1. A short history of quantum mechanics
Quantum mechanics was born as a necessity to explain a series of experi-

ments which are not understandable otherwise. Phenomena such as the black
body radiation [1], the photo-electric effect [2] and the spectral lines of the hy-
drogen atom, just to mention some of the most typical examples, had no possible
Newtonian explanation and were profoundly mining the validity of classical me-
chanics. Eventually, these experiments led to the birth of what is known today
as the old quantum mechanics [3], [4], [5]. At that stage, the quantization of
energy in systems was introduced phenomenologically and no rigorous justifica-
tion was provided. A milestone in the early development of the new theory came
with the work of E. Schrödinger who proposed his famous equation (1926) [6],
describing quantum systems in terms of (complex) wave-functions ψ = ψ(x).
In his exposition, he was the first to propose a physical interpretation of the
unknown function described by his equation, where he regarded the wave inten-
sity ψ∗ψ as the actual density of the electric charge. This approach was able to
give a unique and independent image of the electron but was wrong. Indeed,
being the Schrödinger equation linear, a charge would spread out very rapidly
and without any limit. That is, of course, in contrast with the experimental
evidence: indeed a particle is always found in a small region of space.

Subsequently, a heuristic interpretation of the wave-function in terms of
probability amplitudes was given, known nowadays as the Born rule (1926) [7].
In this explanation, the wave intensity is viewed as the probability of finding

a particle rather than its density. In other words, the best possible description
of a quantum system is of probabilistic nature. This interpretation was further
developed by Bohr to the point that one should not even assign a meaning
to precisely defined particle properties, such as position or velocity, beyond the
limits specified by the Heisenberg uncertainty principle. According to this inter-
pretation, no property has an independent existence. The Schrödinger equation
and the Born rule, along with the following further prescriptions constitute
what is, nowadays, known as the standard or Copenhagen interpretation of
quantum mechanics: every system is completely represented by a wave-function
ψ(x; t); when a measurement is performed, the wave-function collapses; the
wave-particle duality of matter must be invoked to explain experimental results
(Bohr complementarity principle); measuring devices are classical objects which
can access only to classical properties. This is not the only possible interpre-
tation of the Schrödinger equation and its interpretation still remains an open
problem. As a matter of fact, many other conceivable interpretations exist ([8],
[9], [10]).

Although the Schrödinger formalism is the de-facto standard, other possi-
ble approaches to quantum mechanics are available. Indeed, during its devel-
opment, different but mathematically equivalent formulations have eventually
been developed, with their respective advantages and disadvantages, among
which we have the significant works of Wigner [11], Feynman [12] and Keldysh
[13]. Interestingly enough, these approaches are not based on the concept of
wave-functions, but on rather different mathematical objects such as quasi-
distribution functions (Wigner), path integrals (Feynman), non-equilibrium Green
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functions (Keldysh), and still they provide the very same predictions as the
Schrödinger equation. In a sense, the situation is not any different than classi-
cal mechanics where different, but mathematically equivalent, formalisms (such
as Newtonian, Langrangian, Hamiltonian, etc.) can be utilized to describe a
system, depending on the mathematical convenience (a transform is always
available to go from one formalism to another and viceversa).

The Wigner formalism has been successfully applied to problems related to
nuclear physics [14], [15], [16], [17], to the comprehension of chemical reactions
[18], [19], [20], [21], [22], [23], [24], and a thorough study on the quantum col-
lision theory in this formalism has been carried out [25]. It is also a standard
tool in the field of quantum optics [26]. More recently, the Wigner formalism
has received a renewed attention from the scientific community and has been
applied to new interesting physical problems. For example, it has been utilized
to study the appearance of sub-Planck structures in phase-space which sheds
light on the phenomenon of decoherence [27]. It is also worth to mention the
recent studies performed in the field of nanoelectronics and nanotechnology [31],
[28], [29], [30], [34], [35] completely based on the Wigner formalism (see also the
pioneering works [36], [37], [38]). Finally, one should note that very recently the
Wigner formalism has been extended to many-body problems in the frameworks
of density functional theory (DFT) [39] and time-dependent ab-initio simula-
tions [40]. It has shown to be a very convenient formalism when time-dependent,
multi-dimensional and fully quantum simulations are necessary (see for example
[41], [42] and [43]).

In this work, we focus our attention on the Wigner formulation of quan-
tum mechanics and show how to apply it for practical calculations related to
quantum systems. As we will see throughout this review paper, the Wigner
formalism is a very intuitive approach which describes quantum systems in
terms of a quasi-distribution function fW = fW (x;p; t), sometimes referred
to as the Wigner function, where (x;p) is the corresponding phase-space, and
x = (x1,x2, . . . ,xn) and p = (p1,p2, . . . ,pn) are the set of positions and the set
of momenta of the involved particles respectively. We will show that, although
the quasi-distribution function fW can have negative values in some restricted
region of the phase-space (where quantum effects are dominant), it can still be
utilized as a regular distribution function to recover the value of macroscopic
variables as is for the Boltzmann equation of classical statistical mechanics. As
a matter of fact, the work of Wigner was first introduced as a quantum correc-
tion to classical thermodynamics. Thus, it is not surprising that the enunciation
of Wigner is very close to the language of experimentalists, therefore putting
quantum mechanics on relatively more reasonable foundations [45]. Finally, we
will comment on the fact that today experimental techniques exist to measure
the Wigner function and a convincing physical interpretation of the negative
values of fW (x;p; t) can be given [48], [49], [50].

We now give a short introduction to the Monte Carlo method and its use in
physics.
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1.2. A (revised) history of Monte Carlo methods
The purpose of Monte Carlo methods is to approximate the solution of prob-

lems in computational mathematics by using random processes for each such
problem. These methods give statistical estimates for any linear functional of
the solution by performing random sampling of a certain random variable whose
mathematical expectation is the desired functional [51]. Essentially, they reduce
a given problem to approximate calculations of some mathematical expectation.
They represent a very powerful tool when it comes to solve problems in math-
ematics, physics and engineering where the deterministic methods hopelessly
break down. Indeed Monte Carlo methods do not require any additional reg-
ularity of the solution and it is always possible to control the accuracy of this
solution in terms of the probability error. Another important advantage in using
Monte Carlo methods consists in the fact that they are very efficient in dealing
with large and very large computational problems such as multi-dimensional
integration, very large linear systems, partial integro-differential equations in
highly dimensional spaces, etc. Finally, these methods are efficient on parallel
processors and parallel machines. Thus, it is not surprising that these methods
have rapidly found a wide range of applications in applied Science.

Although the year 1949 is generally considered to be the official birthday
of the Monte Carlo method [52], it is worth to note that earlier applications
can be found in literature performed by the french mathematician Georges-
Louis Leclerc, comte de Buffon in 1777 [53]. In his pioneering essay, known as
L’aiguille de Buffon (Buffon’s needle), he poses the following problem: supposing
one drops a needle onto a floor made of parallel strips of wood (with the same
width), what is the probability the needle lies across a line between two strips?
He found that the solution is 2l

πt , where l is the length of needle and t is the
distance between each strip. As pointed out, later on, by Marquis Pierre-Simon
de Laplace (in 1886), this approach can be used as a method to compute the
value of the number π. As a matter of fact, by repeatedly throwing the needle
onto a lined sheet of paper and counting the number of intersected lines, one
can eventually estimate the value of π, in other words a Monte Carlo method to
evaluate the number π. With the advent of computational resources, intensive
applications started to be developed in the Manhattan project (Los Alamos,
USA), by J. von Neumann, E. Fermi, G. Kahn and S.M. Ulam. The legend says
that the name Monte Carlo was eventually suggested by N. Metropolis in honor
of Ulam’s uncle who was a well-known gambler.

With the development of even more powerful computers, especially paral-
lel machines, a new momentum in the development of Monte Carlo methods
has been provided. Indeed, nowadays, Monte Carlo algorithms exist to solve
a plethora of different computational problems and it is practically impossi-
ble to specify a (even barely) complete list. Still, Monte Carlo methods can
be divided into two main classes: Monte Carlo simulations and Monte Carlo

numerical methods. In the first class, algorithms simulate physical processes
and phenomena and these Monte Carlo methods are simply tools that mimic
the corresponding physical, chemical or biological laws. A good example for
this class is provided by the Boltzmann Monte Carlo method for the simulation
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of electron transport in semiconductor devices [54]. This algorithm reproduce
the dynamics of a certain number of electrons which obey the law of classi-
cal physics when interacting with an external electric field (drift process) and
behave quantum mechanically when interacting with the quantized lattice vibra-
tions know as phonons (diffusion process). In the second class of Monte Carlo
methods, we have instead stochastic numerical algorithms for the resolution of
computational problems such as linear systems, eigenproblems, evaluation of
multi-dimensional integrals, etc. These algorithms construct artificial random
processes, usually Markovian, which mathematical expectation represents the
solution of a given problem. A good example of such algorithms is given by the
Monte Carlo method for linear systems discussed in [81].

In this review paper, we will focus only on a Monte Carlo method for the
(time-dependent) solution of the Wigner equation. Recently several techniques
to solve the Wigner equation have been developed which scale naturally on
parallel machines, one being based on the concept of particle quantum affinity

[28], [29], [30], [31] (inspired by the pioneering works [32] and [33]), the other
being based on the concept of signed particles on which we will mainly focus
in this work [64], [65]. The last method is based on the iterative Monte Carlo
methods for the resolution of linear and non-linear systems of equations (both
integral and algebraic) described in [81], [82]. Very recently, the Wigner Monte
Carlo method based on signed particles has open the way towards quantitative,
time-dependent, multi-dimensional, single and many-body simulations in terms
of affordable and reasonable computational resources. In practice, it has been
applied to the simulation of quantum single-body problems in technologically
relevant situations [41], [42], extended to time-dependent quantum many-body
problems in the framework of density functional theory [39], and has even been
generalized to the ab-initio simulations of strongly correlated many-body prob-
lems [40]. This is the first time that the Wigner formalism can be applied to
such class of important (and computationally demanding) problems. The au-
thors believe this formalism and its related Monte Carlo method can have a
profound impact in the field of applied Sciences, espcially for physics and chem-
istry, since it offers a higher level of details in the simulation of quantum systems
at a relatively reasonable computational cost. This is why, in the rest of the
paper, we will mainly focus on the recent developments of the Wigner Monte
Carlo method, its extensions to the quantum many-body problem, and its ap-
plications. We now introduce the Wigner formulation of quantum mechanics in
details.

2. Quantum mechanics in phase-space

The aim of this section is to introduce the main tenets of the Wigner for-
mulation of quantum mechanics. To this purpose, we start from recalling the
principle concepts of the Schrödinger approach. This is twofold. On the one
hand, it establishes the mathematical notation which will be utilized throughout
this paper. On the other hand, the initial use of (standard) Schrödinger wave-
functions enables a, somehow, quite natural approach to the Wigner formalism.
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Incidentally, the very first formulation of quantum mechanics in a phase-space
was obtained as an attempt of E. Wigner to find quantum corrections to the
Boltzmann equation of classical statistical physics [11] and was completely based
on the concept of (pure state) wave-functions. A recent overview of the gener-
alization of the work of Wigner to the case of mixed states was given in [55].
In this enunciation, the invariance of the Wigner equation with respect to the
(anti-) symmetric wave-function defining the initial conditions is relatively sim-
ple to prove. We will make full use of this result to show how the Pauli exclusion
principle is naturally embedded in the Wigner formalism [56]. Then, we proceed
with sketching the work of J.E. Moyal [45], a generalization of the Wigner theory.
This approach establishes elegant and convenient mathematical foundations for
the Wigner model in both time-dependent and time-independent context and,
furthermore, introduces the concept of stargenproblem (∗−genproblem). Along
with the work of Dias and Prada [47], it depicts a quantum mechanical theory
which is totally independent from the concept of wave-function. In particular,
using the approach in [47], conditions to determine if a function defined over
the phase-space has a physical meaning are established. Finally, the Wigner
equation is generalized to the case of many-body particles. This will be use-
ful when introducing the Monte Carlo techniques for time-dependent ab-initio
simulations. To conclude, a short discussion about the connections between
the Wigner quasi-distribution function and experimental observations is given,
allowing the suggestion of a reasonable explanation of the negative values ap-
pearing in some area of the phase-space.

2.1. The Schrödinger formalism
The time-dependent and time-independent Schrödinger equations are two

linear partial differential equations describing the state of a given quantum me-
chanical system [6]. Both have played a crucial role in the comprehension of
Nature at a quantum level and can be considered the quantum analogues of
Newton’s second law. Nowadays, this approach is considered the standard in
quantum mechanics. It is, thus, not surprising that E. Wigner utilized one of
these equations (time-dependent) as a starting point to create his own formalism
[11].In this section we briefly recall the main tenets of the Schrödinger formu-
lation of quantum mechanics. We adhere to the exposition of L.D. Landau [60]
and limit ourselves to the non-relativistic case.

The Born rule. A (complex, normalized) wave-function ψ = ψ(x) represents
the most complete description of a given system which squared modulus ψ2(x)dx
is the probability of finding a particle around the position x in the interval dx
(Born rule [7]).

Operators. To any physical quantity A, there is a corresponding Hermitian
(linear) mathematical operator Â which eigenvalues an are the possible outcomes
of measuring A [60].

The time-independent Schrödinger equation. The time-indipendent Schrödinger
equation is an eigenproblem which unknowns are the energy levels of a system
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along with the corresponding eigenfunctions. It describes quantum systems in
the presence of time-independent external field and reads

Ĥψ (x) = Eψ (x) , (1)

where Ĥ is known as the Hamiltonian operator and reads:

Ĥ =
p̂2

2m
+ U(x) = − h̄2

2m
∇2

x + U(x), (2)

with m the mass of the particle and U = U(x) the potential energy of the

particle in an external field and the operator ∇2
x = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

The solution can be formally written as (En, ψn) for n = 0, 1, 2, . . . , where
the wave-functions ψn are also called stationary states, and the function ψ0

and the energy E0 are known as the ground state and the zero-point energy

respectively. In particular, this equation implies the possibility for quantized
energies.

The time-dependent Schrödinger equation The time-dependent Schrödinger
equation represents the most general description of a system in the wave-function
formalism [6] and reads:

ih̄
∂ψ (x; t)

∂t
= Ĥψ (x; t) . (3)

One should note that being a linear partial differential equation, the principle
of superposition holds.

2.2. The Wigner formalism

In 1932, in his search for quantum corrections to classical thermodynamic,
E. Wigner came up with a very elegant and intuitive formulation of quantum me-
chanics in terms of phase-space and distribution functions [11]. In this section,
we focus on the development of this formalism starting from the original work
of Wigner in a pure quantum state. This approach is extended to the case of
mixed states by exploiting the concept of density matrix. Then, we proceed with
presenting the work of J. Moyal which puts the theory on firm mathematical
foundations. A study on the admissible states in the phase-space formulation,
developed by Tatarskii, Prata and Dias, is presented, showing the (important)
mathematical properties quasi-distribution functions must have in order to be
valid descriptions of quantum systems and putting the Wigner theory on totally
independent foundations with respect to the work of Schrödinger. Afterwards,
we generalize the single-body Wigner equation to the quantum many-body case
and to systems of identical particles (with a particular attention to Fermions).
We conclude this section by commenting on a possible physical interpretation
of the negative values appearing in quasi-distribution functions and its relation
with experimental observations in quantum tomography.
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2.2.1. Pure states

Assuming that the state of a single-body quantum system is represented by
the wave-function ψ(x; t), it is possible to construct the following expression:

fW (x;p; t) =
1

(h̄π)d

∫ +∞

−∞

dx′ψ∗(x+ x′; t)ψ(x− x′; t)e−
2i
h̄
x′·p, (4)

(we remind that d = 1, 2, 3 is the dimension of the spatial domain). It can
be shown that the function fW = fW (x;p; t) is real but not positive definite
[11], thus it cannot be considered a proper distribution function. However this
function has convenient and useful mathematical properties: when integrated
with respect to p it gives the quantity

∫ +∞

−∞

dpfW (x;p; t) = |ψ(x; t)|2 ,

which represents the probability of finding the particle in a certain position,
while when integrated with respect to x it gives the probability for the momen-
tum, i.e.

∫ +∞

−∞

dxfW (x;p; t) =

∣

∣

∣

∣

∫

dxψ(x; t)e−
i
h̄
x·p

∣

∣

∣

∣

2

.

Accordingly, it follows that one can calculate the space-dependent and space-
independent expectation values Ā(x) and < A > of any function (macroscopic
variable) of coordinates and momenta A = A(x;p), i.e.

Ā(x) =

∫ +∞

−∞

dpA(x;p)fW (x;p; t), (5)

and

< A >=

∫ +∞

−∞

dxĀ(x) =

∫ +∞

−∞

∫ +∞

−∞

dxdpA(x;p)fW (x;p).

Therefore, it follows that despite the function fW is a quasi-distribution function
it can still be utilized in practical situations for the calculation of the average
values< A > and Ā(x) of a given macroscopic variable A(x;p). Yet the quantity
fW (x;p; t) cannot be interpreted as a simultaneous probability for both position
and momentum of a particle (despite they are independent variables).

Exploiting the fact that the wave-function ψ(x; t) evolves according to the
time-dependent Schrödinger equation (3), it is possible to derive the correspond-
ing evolution equation for the quasi-distribution function fW (x;p; t). Indeed,
by making use of the definition (4), it is possible to calculate the time derivative
of the function fW (x;p; t) [11]:

∂fW

∂t
(x;p; t) =

1

(h̄π)d
∂

∂t

∫ +∞

−∞

dx′ψ∗(x+ x′; t)ψ(x− x′; t)e
2i
h̄
x′·p = (6)

=
1

(h̄π)d

∫ +∞

−∞

dx′e
2i
h̄
x′·p

[

∂ψ∗

∂t
(x+ x′; t)ψ(x− x′; t) + ψ∗(x+ x′; t)

∂ψ

∂t
(x− x′; t)

]

,
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where, from (3) one has:

∂ψ

∂t
(x− x′; t) =

1

ih̄

[

− h̄
2∇2

xψ(x− x′; t)

2m
+ U(x− x′; t)ψ(x− x′; t)

]

. (7)

Furthermore, from the complex conjugate of (3) one has:

∂ψ∗

∂t
(x+ x′; t) =

1

ih̄

[

h̄2∇2
xψ

∗(x+ x′; t)

2m
− U(x+ x′; t)ψ∗(x+ x′; t)

]

. (8)

Thus, by substituting (7) and (8) into (6), replacing the differentiations with
respect to x by differentiations with respect to x′, and performing partial in-
tegrations for the terms containing the operator ∇2

x, one can easily show that
[11]:

∂fW

∂t
(x;p; t) =

1

(h̄π)d

∫ +∞

−∞

dx′e
2i
h̄
x′·p (9)

·
{ p

m
[−∇x′ψ∗(x+ x′; t)ψ(x− x′; t) +∇x′ψ(x− x′; t)ψ∗(x+ x′; t)]

+ψ∗(x+ x′; t)ψ(x− x′; t) [U(x+ x′; t)− U(x− x′; t)]} ,

from which (by replacing the differentiations with respect to x′ back to x) one
finally obtains the (time-dependent) Wigner equation:

∂fW

∂t
+

p

m
· ∇xfW =

∫ +∞

−∞

dp′VW (x;p′; t)fW (x;p+ p′; t), (10)

where

VW (x;p; t) =
i

πdh̄d+1

∫

dx′e−(
i
h̄ )x

′·p
[

U(x+
x′

2
; t)− U(x− x′

2
; t)

]

, (11)

referred to as the Wigner kernel (or, sometimes, the Wigner potential) and
where the external potential U = U(x; t) can be varying in time.

Equation (10) is known as the Wigner equation and describes the dynam-
ics of a system consisting of a single particle in the presence of an external
potential U(x; t). This equation is of paramount importance in the Wigner for-
mulation of quantum mechanics and will be the focus of this review effort. The
Wigner equation (10) represents what the Schrödinger equation (3) represents
in the standard formalism (indeed in the next section we show that they are
mathematically equivalent). It is a statistical approach to quantum mechanics,
although not in a classical sense as the function fW can have negative val-
ues. Unlike classical statistics which can be regarded as a crypto-deterministic

theory and the whole uncertainty of a system is contained in the initial con-
ditions, in the Wigner approach the time evolution of fW is not necessarily
crypto-deterministic (in a classical sense at least) [45]. Moreover, the defini-
tion (11) gives an important insight as it shows the quantum mechanical nature
of the quasi-distribution fW . Indeed, one possible interpretation of the kernel
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VW (x;p; t) is given in [11]: VW represents the probability for a particle to jump
in the phase-space and have a momentum p; this jump happens discontinously
and in discrete amounts equivalent to half the momenta of light quanta, as if
the potential were composed of light.

Finally, it is important to note that if the potential U = U(x; t) can be
developed in a Taylor series, then the Wigner equation (10) reads:

∂fW

∂t
+

p

m
· ∇xfW −∇xU · ∇pfW =

=

+∞
∑

l=1

(−1)l

(2l)!

(

h̄

2

)2l

∇2l
x U · ∇2l

p fW , (12)

where, in a three-dimensional space,∇2l
x =

(

∂2l

∂x2l ,
∂2l

∂y2l ,
∂2l

∂z2l

)

,∇2l
p =

(

∂2l

∂p2l
x
, ∂2l

∂p2l
y
, ∂2l

∂p2l
z

)

with x = (x, y, z) and p = (px, py, pz). In particular, one easily observes that in
the limiting case h̄→ 0 the Wigner equation (12) reduces to:

∂f

∂t
+

p

m
· ∇xf −∇xU · ∇pf = 0, (13)

which is known as the Vlasov equation (or the Boltzmann equation in the bal-
listic case) and describes a classical system in terms of a distribution function
f = f(x;p; t) (i.e. non-negative definite). Thus, the emergence of classical me-
chanics from quantum mechanics can be easily explained in this context. Ad-
ditionally, one should note that when the potential U(x) can be expressed as a
polynomial of second order, it is easy to prove that the Wigner equation (12) re-
duces again to the Vlasov equation (13), which solution can be found analitically
by means of the method of characteristics (for the case of a time-independent
potential, the Vlasov equation reduces to a scalar hyperbolic equation).

2.2.2. Mixed states

When conducting an experiment, it is not always possible to know which
quantum state is currently being manipulated. This situation arises, for exam-
ple, in systems in thermal equilibrium or in systems with a random preparation
history. In this case, the pure state approach depicted in equations (1) and (3)
is not useful any longer and the concept of density matrix is more suitable. In
the following, we use the mathematical approach described in [55] and we show
that the evolution equation for the Wigner function remains unchanged.

In the coordinate representation, the density matrix ρ(x;x′; t) is defined as:

ρ(x;x′; t) =
∑

i

piψ(x; t)ψ
∗(x′; t), (14)

where pi is the statistical weight of the pure (normalized) state ψ(x). The cor-
responding evolution equation, known as the Liouville-von Neumann equation
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(or the Von Neumann equations tout court), was depicted for the first time by
J. von Neumann [46] and reads:

ih̄
∂ρ

∂t
=

[

Ĥ, ρ
]

, (15)

where the brackets [., .] denote the commutator [X,Y ] = XY − Y X. Now, by
exploiting the definition of a macroscopic variable (5), it is possible to express
the Wigner quasi-distribution function fW (x;p; t) in terms of the density matrix
ρ(x;x′) [55]:

fW (x;p; t) =
1

(πh̄)d

∫

dx′ρ(x− x′;x+ x′; t)e
2i
h̄
x′·p. (16)

By applying the transform (16) to the equation (15), it is possible to show
that the evolution equation for the Wigner function corresponding to the mixed
state regime essentially remains the same as (10) [55]. In other words, despite
the mixed states definition (16) differs from the pure state definition (4), the
evolution equation does not change. This is certainly not surprising if one
reminds that the density matrix is a combination of pure states and the Wigner
function is a bilinear combination of these states.

2.3. The Wigner formalism for the many-body problem

In this section, we introduce the time-dependent quantum many-body prob-
lem for an arbitrary number n of particles in the Wigner formalism. At a first
glance, this formulation does not seem to introduce any particular advantage
over the standard approach, as the mathematical expressions involved are in-
credibly complicated. But later we will see that, thanks to the Monte Carlo
techniques nowadays available, the Wigner formalism actually brings an impor-
tant pool of possibilities which are hardly immaginable in other formulations of
quantum mechanics.

We show that a many-body quasi-distribution function can be defined for
such systems and an evolution equation can be delineated. For the sake of clarity
and completeness, we start from describing the problem in the Schrödinger
formalism. Then we introduce the many-body Wigner equation. Finally we
conclude by discussing the simulation of systems of indistinguishable particles
in the phase-space quantum theory.

2.3.1. The many-body Schrödinger and von Neumann equations

In the presence of a quantum system composed of n interacting particles, a
time-dependent Schrödinger equation similar to (3) can be depicted. In partic-
ular, the space of configurations now consists of the coordinates of n particles,
and is denoted as

x = (x1,x2, . . . ,xn) , (17)

where xi = (xi, yi, zi) are the spatial coordinates of the i-th particle, and
i = 1, 2, . . . , n. Accordingly, the wave-function is a function of the n-body

13



configuration space and the many-body time-dependent Schrödinger equation
reads

ih̄
∂ψ

∂t
(x1,x2, . . . ,xn; t) = Ĥψ (x1,x2, . . . ,xn; t) , (18)

where the Hamiltonian operator Ĥ is generalized as

Ĥ = Ĥ (x̂1, x̂2, . . . , x̂n; p̂1, p̂2, . . . , p̂n) (19)

= −
n
∑

i=1

p̂2
i

2m
+ U(x1,x2, . . . ,xn; t),

with x̂i = (x̂i, ŷi, ẑi) and p̂i = −ih̄∇i = −ih̄
(

∂
∂xi

, ∂
∂yi

, ∂
∂zi

)

the position and

momentum operators for the i-th particle respectively.

In the same way, the Liouville-von Neumann equation is modified to take
into account the many-body configuration space. In this context, this equation
now reads:

∂ρ

∂t
(x1,x2, . . . ,xn) =

1

ih̄
[H (x̂1, x̂2, . . . , x̂n; p̂1, p̂2, . . . , p̂n) , ρ (x1,x2, . . . ,xn)] ,

(20)
which can be seen as a generalization of the single-body Liouville-von Neu-
mann (15), with the operator Ĥ as in (20). One should note that despite the
mathematical structure of the many-body equation (20) is essentially the same
as equation (15), this equation represents an incredibly more complex mathe-
matical challenge, even when approached by numerical techniques. The same
applies to the many-body Schrödinger equation as both models are defined over
a n · d−dimensional configuration space.

2.3.2. The many-body Wigner equation

The Wigner formulation of quantum mechanics allows the description of
systems consisting of n interacting particles by means of a quasi-distribution
function fW = fW (x;p; t), where the phase-space is now a 2 ·n · d−dimensional
space (x;p) = (x1,x2, . . . ,xn;p1,p2, . . . ,pn), where xi and pi have the usual
meaning. In this new context, the pure state Wigner function reads:

fW (x;p; t) =
1

(h̄π)d·n

∫

dx′e−
i
h̄

∑n
k=1

x′

k·pk

×Ψ(x+
x′

2
; t)Ψ∗(x− x′

2
; t)

)

, (21)

where Ψ = Ψ(x; t) is a Schrödinger many-body pure state,
∫

dx′ =
∫

dx′
1

∫

dx′
2 . . .

∫

dx′
n,

and (x ± x′

2 ) = (x1 ± x′

1

2 ,x2 ± x′

2

2 , . . . ,xn ± x′

n

2 ; t). Analogously, a definition
can be given in case of mixed states described by a many-body density matrix
ρ = ρ(x;y; t)

fW (x;p; t) =
1

(h̄π)d·n

∫

dx′e−
i
h̄

∑n
k=1

x′

k·pkρ(x+
x′

2
;x− x′

2
; t). (22)
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By applying the transform (21) to the many-body Schrödinger equation (18),
one obtains the corresponding time-dependent many-body Wigner equation:

∂fW

∂t
(x;p; t) +

n
∑

k=1

pk

mk
· ∇xk

fW =

∫

dpfW (x;p; t)VW (x;p; t), (23)

where
∫

dp =
∫

dp1

∫

dp2 . . .
∫

dpn, mk is the mass of the k-th particle, and the
many-body Wigner kernel VW = VW (x;p; t), now reads:

VW (x;p; t) =
i

πdnh̄dn+1

∫

dx′e−(
2i
h̄ )

∑n
k=1

x′

k·pk
[

U(x+
x′

2
; t)− U(x+

x′

2
; t)

]

.

(24)
The function U = U(x; t) = U (x1,x2, . . . ,xn) is the potential acting over the n
particles, and, in general, can vary in time and further details are provided in
the next section.

2.3.3. Notes on the many-body potential

Usually, the potential U = U(x) is expressed as a sum of two terms

U(x) = Vext(x) + Vee(x) (25)

where Vext(x) and Vee(x) represent the external and electron-electron interac-
tion potentials. More specifically, the term Vext most commonly describes either
an external potential applied to the system, such as one obtained by connecting
leads providing an applied electrostatic potential (typical in the simulation of
electron transport in electronic devices) or the potential due the nuclei (if a
molecular system is studied). The term Vee represents, instead, the inclusion
of electron-electron electrostatic interactions due to their Coulombic potential.
Usually, this term is given by the Hartree approximation (in atomic units):

Vee(x) =
1

2

n
∑

i6=j

e2

|xi − xj |
, (26)

with e the elementary charge. In particular, for an isolated molecular system
one has:

U(x; t) = −
nion
∑

i,j=1

Zje
2

|xi − xj |
+

1

2

n
∑

i6=j

e2

|xi − xj |
, (27)

where the first term represents the superposition of Coulombic potentials due
to the nuclei (which atomic number is Zj for the j-th nucleus).

2.3.4. Identical particles

A very interesting case for applied quantum physics and quantum chemistry
is represented by systems consisting of indistinguishable Fermions. In order to
treat this case in the many-body Wigner formalism, we follow the reasoning
reported in [55]. In a previous section, we have shown that, starting from the
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many-body Liouville-von Neumann equation (20), and by applying the trans-
form (22) to it, one recovers the many-body Wigner equation (23). One should
note that, in the process, no assumption has been made on the symmetry prop-
erties of the system [55].

Now, it is well known that indistinguishable Fermions in the standard for-
malism are described by antisymmetric wave-functions, i.e.

Ψ(x1,x2, . . . ,xi, . . . ,xj , . . . ,xn; t) = −Ψ(x1,x2, . . . ,xj , . . . ,xi, . . . ,xn; t).
(28)

Therefore, taking into account the antisymmetric nature of the system, one can
define a Weyl map for Fermions

f−W (x;p; t) =
1

(h̄π)d·n

∫

dx′e−
i
h̄

∑n
k=1

x′

k·pk

×Ψ−(x1 +
x′
1

2
, . . . ,xn +

x′
n

2
; t)

×Ψ−∗(x1 −
x′
1

2
, . . . ,xn − x′

n

2
; t)

)

, (29)

where Ψ−(x1, . . . ,xn) is an antisymmetric many-body wave-function. The case
for mixed states is obtained in a similar way in [55]. It is possible to show that
the many-body Wigner equation for indistinguishable Fermions is again (23)
[55], [61]. Indeed, the outcome of applying the transform (22) to the equation
(20) does not depend on the symmetry properties of the system. This proves
that the whole Wigner formalism does not need any change to treat the case of
antisymmetric systems [55]. In particular, an important point is that the Pauli
exclusion principle is directly embedded into the Wigner formalism and does
not necessitate to be imposed.

As a consequence, the antisymmetric properties of the system are defined
through the initial conditions only. Thus, in order to handle systems of Fermions,
one simply starts from a Slater determinant imposed at a initial time, say t = 0:

Ψ−(x1, . . . ,xn) =
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ2(x1) . . . φn(x1)
φ1(x2) φ2(x2) . . . φn(x2)
. . . . . . . . . . . .

φ1(xn) φ2(xn) . . . φn(xn)

∣

∣

∣

∣

∣

∣

∣

∣

, (30)

(although the reader should note that this is not the only possible choice). It
can be shown that this is equivalent to express the initial Wigner function as a
sum of reduced single-particle Wigner functions and a number of integral terms
[62], [63]. As a matter of fact, this couples the involved Fermions together, in
agreement with the fact that the corresponding initial Wigner function cannot
be expressed as multiplications of indipendent wave-packets only.

2.4. The Moyal formalism

In 1949 J. Moyal published an important contribution to the theory of
quantum mechanics in phase-space. In a brilliant attempt to understand if
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the Wigner approach was a proper statistical theory, he merged the works of
E. Wigner [11], J. von Neumann [46], H. Weyl [59] and H. Groenewold [57] in
a elegant and firm mathematical framework [45]. This formulation is statistical
and provides a way to connect classical mechanics to quantum mechanics, allow-
ing a natural comparison between these drastically different theories of Nature.
Moreover, the work of Moyal allows to completely avoid the use of operators for
observables, a very intuitive perspective especially if compared to the standard
approach of quantum mechanics. In the following, for simplicity we introduce
the theory for the one-dimensional space, being the generalization to higher
dimensional spaces trivial.

The Weyl map. A fundamental mathematical tool in the Moyal theory is
represented by the Weyl map. The Weyl map MW , also known as the Weyl
correspondence rule or the Wigner-Weyl transform, is an isomorphism from the
space of linear operators Â with a product · and a commutator [., .] to the space
of functions A(x; p) defined over the phase-space with a (non-commutative)
product ∗, known as the Groenewold product [57] and bracket [., .]M , known as
the Moyal bracket [45]:

(

Â (x̂; p̂) , ·, [., .]
)

→ (A(x; p), ∗, [., .]M ) .

In particular, given a quantum operator Â = Â (x̂; p̂), expressed in terms of
the position and momentum operators x̂ and p̂ respectively, the Weyl map is
mathematically defined as:

MW

(

Â
)

(x; p) = A(x; p) =
h̄

2π

∫

dξ

∫

dηTr
[

Â (x̂; p̂) ei(ξx̂+ηp̂)
]

e−i(ξx+ηp),

(31)
where Tr[.] is the trace of an operator and the exponential of an operator is

defined as eX̂ =
∑+∞

l=0
1
l!X̂

l. An important property of the Wigner mapping is
that it is invertible [47]. The Groenewold ∗-product and Moyal bracket [., .] can
be defined in terms of the Weyl map. As a matter of fact, given two operators
Â and B̂ which corresponding Weyl transforms are the functions A = A(x; p)
and B = B(x; p) one has:

A ∗B = MW

(

Â, B̂
)

(32)

[A,B]M =
1

ih̄
(A ∗B −B ∗A) = 1

ih̄
MW

([

Â, B̂
])

. (33)

In this formalism, the Wigner quasi-distribution function is defined as the
Weyl transform of the density matrix operator times a normalization factor, i.e.:

fW (x; p; t) =
1

2πh̄
MW (ρ̂(t)) , (34)
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and, for the particular case of pure states, it is possible to show that [47]:

fW (x; p; t) =
1

2π

∫

dyψ∗(x+
h̄y

2
; t)ψ(x− h̄y

2
; t)e−iyp

=
1

h̄π

∫

dx′ψ∗(x+ x′; t)ψ(x− x′; t)e−
2i
h̄
x′·p,

i.e. formula (4). One can also show that the function fW (x; p; t) is square
integrable, normalized and real, but not positive defined.

2.4.1. Evolution equations

The time-independent equation. One important point of the work of Moyal
is represented by the so-called ∗−genproblem, essentially corresponding to the
time-independent Schrödinger equation in the Wigner formalism. If an operator
Â is given with a non-degenerate spectrum and, in the Dirac notation, |a〉 is
one of its eigenvectors corresponding to the eigenvalue a, i.e.

Â |a〉 = a |a〉 ,

then it is possible to show that the corresponding Wigner function, defined as
faW (x; p) = 1

2πh̄VW (|a〉 〈a|), is the solution of the following problem [45], [47]

A(x; p) ∗ faW (x; p) = afaW (x; p),

faW (x; p) ∗A(x; p) = afaW (x; p), (35)

known as a ∗-genvalue problem (and it is possible to generalize this result to
the case of degenerate spectrum [47]). Equation (35) is a ∗-genvalue problem
and represents in the Moyal formalism what the time-independent equation (1)
represents in the Schrödinger formalism, when A(x; p) = H(x; p) = MW (Ĥ)
(with Ĥ defined in (2)).

The time-dependent equation. In the very same way, it is possible to obtain
the time-dependent evolution equation for the Wigner function fW (x; p; t). In-
deed, supposing that the wave-functions ψ(x; t) is a solution of the Schrödinger
equation (3), one can show that the function fW obeys to the following evolution
equation:

∂fW (x; p; t)

∂t
= [H, fW (x; p; t)]M , (36)

which corresponds the single-body Wigner equation in the Moyal formalism and
it is equivalent to equation (10). In this formulation of quantum mechanics, this
corresponds to the time-dependent Schrödinger equation (3).

2.5. Admissible states in phase-space

More recently, the work of Tatarskii [58] and Dias and Prata [47] have shown
what the definition, conditions and properties for admissible pure and mixed
states are in the phase-space formulation of quantum mechanics [47]. This is
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twofold. On the one hand, it helps us to define what properties a phase-space
function (a c−number) must have in order to be a valid description of a state
in the Wigner formalism (in other words, not every function defined over the
phase-space is a valid physical description). On the other hand, it shows that
the Wigner formalism can be defined in a completely independent form from
the Schrödinger formulation.

Definition of quantum pure states. A distribution function fW (x; p) is said
to represent a pure quantum state in the Wigner formalism if it can be expressed
in terms of only one pure state wave-function. Formula (4) is an example of
pure state. Pure quantum states correspond to valid descriptions of physical
systems. Thus, an important question that raises from these definitions is, given
a real valued and normalized function defined over the phase-space f = f(x; p),
how to determine if it is a pure state. In the following we report mathematical
properties that all phase-space functions must satisfy to be valid representations
of a pure state in the Wigner formalism. In order to answer to this question we
make use of the results presented in [47].

Condition 1. Given a real valued, normalized function f = f(x; p) defined
over the phase-space, one can show that it represents a pure state if and only if

it satisfies the following condition:

f ∗ f =
1

2πh̄
f. (37)

Thus, given a function defined by (4) with ψ a normalized complex valued
function, it satisfies condition (37). Conversely, given a normalized real valued
function fulfilling property (37), it is a valid pure state in the Wigner formalism.
While this is a very elegant and concise way to check wheter a phase-space
function represents a pure state, in practice it may be difficult to evaluate the
∗-product involved in (37). A more practical way is provided by the following
condition.

Condition 2. Let f = f(x; p) be a square integrable phase-space function
and

Z(x; j) =

∫

dpeijpf(x; p),

a function of the position x and variable j. The function f(x; p) can be expressed
in the form:

f(x; p) =
1

(h̄π)

∫ +∞

−∞

dx′ψ∗
a(x+ x′)ψb(x− x′)e−

2i
h̄
x′·p,

with ψa(x) and ψb(x) two complex square integrable functions, if the function
Z(x; j) satisfies the following (non-linear) partial differential equation:

∂2

∂j2
lnZ(x; j) =

(

h̄

2

)2
∂2

∂x2
lnZ(x; j). (38)
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Moreover, if the function f(x; p) is real and normalized then it represents a pure
quantum state in the Wigner formalism. Conversely, if the function f(x; p) is a
pure state then it satisfies (38). An alternative (but equivalent) way to check
if a phase-space function represents a pure state is obtained by introducing the
following function:

Σ(y; p) =

∫

dxeixyf(x; p).

It can be shown that a normalized real valued function f(x; p) is a quantum
pure state if and only if

∂2

∂y2
lnΣ(y; p) =

(

h̄

2

)2
∂2

∂p2
lnΣ(y; p). (39)

Equation (39) represents an alternative way to the condition (38) which might
be easier to evaluate depending on the specific case.

We call equation (38) the pure state quantum condition which was intro-
duced in 1983 by V. Tatarskii [58]. In the following, we report several proper-
ties for pure quantum states valid in the phase-space formulation of quantum
mechanics. While we do not make any direct use of these results here, it is im-
portant to report them since they allow a direct connection to the Schrödinger
formalism. Indeed they provide a way to calculate the corresponding wave-
functions of a given phase-space function. Moreover, these theorems provide
conditions which must be fulfilled by a phase-space function to be a proper
Wigner quasi-distribution describing a physical system.

Theorem 1. Let the time-dependent function f = f(x; p; t) satisfies the pure
state quantum condition (38) at initial time t = 0, and let its time evolution be
governed by the Moyal equation (36). Then the function f(x; p; t) satisfies the
pure state quantum condition for every t.

Theorem 2. Given a generic and linear operator Â and a corresponding
phase-space function A = A(x; p) defined as

A(x; p) =MW

(

Â
)

,

then the solution of the following ∗-genvalue problem

A(x; p) ∗ f(x; p) = af(x; p),

f(x; p) ∗A(x; p) = bf(x; p), (40)

with a and b belonging to the spectrum of Â, is a pure state and its corresponding
wave-functions satisfy the eigenvalue problems

Âψa(x) = aψa(x),

Â†ψb(x) = b∗ψb(x),

with Â† the adjoint of Â.
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Theorem 3. If a function fW (x; p) satisfies the ∗-genvalue problem (35), then
the associated wave-function ψ is given by

ψ(x) = N

∫

dpei
px
h̄ fW

(x

2
; p
)

= NZ
(x

2
;
x

h̄

)

, (41)

(42)

where N is a normalization constant. The function ψ(x) satisfies the eigenprob-
lem (1).

In particular, these theorems prove that the solutions of the general ∗-
genvalue problem (40) are pure states associated to the wave-functions satisfying
the corresponding eigenvalue problem and are given by (42). These results pro-
vide a complete generalization and specification for pure states in the Wigner
formalism.

Finally, it is important to note that the pure state quantum conditions (38)
implies the Heisenberg principle of uncertainty [47]. Following the example
of Tatarskii [58], [47] let us consider a Hamiltonian quadratic in position and
momentum. In the specific case of a simple harmonic oscillator, the Hamiltonian
of the system reads

H(x; p) =
p2

2m
+

1

2
mω2x2,

and the Moyal equation (36) reduces to the (classical) Liouville equation [47]

[H(x; p), fW (x; p)]M = − p

m

∂fW

∂x
+mω2x

∂fW

∂p
= 0. (43)

It is possible to show that, in this case, any function of the Hamiltonian H(x; p)
is a solution of (43). In particular we construct the following solution

fW (x; p) =
aω

2π
e−aH(x;p) (44)

(with a a positive real constant) which is real, normalized and square integrable.
The position and momentum dispersions read

(σx)
2 = 〈x̂2〉 − 〈x̂〉2 =

1

maω2
,

(σp)
2 = 〈p̂2〉 − 〈p̂〉2 =

m

a
.

Thus

σx · σp =
1

aω
,

which has no lower bound since a is an arbitrary constant, in disagreement
with the uncertainty principle of Heisenberg. This means that the proposed
solution is not an acceptable quantum state in the Wigner formalism. This is an
important point. As a matter of fact, this example shows in a clear manner that
not every phase-space function is an acceptable state in the Wigner formalism.
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The pure state condition (38) must be fulfilled. If we, now, impose this condition
to fW one obtains:

a =
2

h̄ω
,

which now introduces the following relation

σx · σp =
h̄

2
,

i.e. a even more restrictive condition than the uncertainty principle of Heisen-
berg [58], [47].

2.6. Interpretation of negative probabilities

The Wigner quasi-distribution function defined in (4), (16) for single-body
problem (in pure and mixed state respectively), and in (21), (22) for the many-
body problem (in pure and mixed states respectively), retains many of the
properties of a classical distribution function. As a matter of fact, one can use
it to compute the average value of a macroscopic variable. The only difference
consists in the negative values the Wigner function can have in some region
of the phase-space. In this section, we suggest a reasonable interpretation of
these negative probabilities based on the experimental evidences presented in
[48], [49], and [50] in the context of quantum tomography. To this aim, we start
by discussing the convolution of the Wigner function. Then we briefly sketch
how the Wigner function of an experiment setting is reconstructed. From the
previous two points we suggest an interpretation of the (sometimes occuring)
negative values.

Convolution of the Wigner function. In order to compute the average value
of a macroscopic variable A = A (x;p), one utilizes formula (5) which is essen-
tially a convolution of the Wigner function. This creates a direct connection to
classical (statistical) mechanics. In the convolution process, the Wigner function
fW = fW (x;p; t) is multiplied by a function A (x;p) which can be naturally
interpreted as the phase-space probability of possible states of a measurement
device (distributed over an area of order h̄ or larger) [49], [50]. In particular,
when the resolution of the measuring device is degraded away, such that the
Heinsenberg uncertainty principle do not play any important role any longer,
localized regions of fW (x;p; t) (which may contain negative values) are washed
out and formula (5) becomes completely classical [50].

Quantum tomography. We have seen that the probability distribution of
any physical observable corresponds to an integration of the Wigner function.
Therefore, it seems that any measurement cannot provide localized values of
the fW (x;p; t). Despite these difficulties, an experimental technique known as
quantum tomography has been developed which can reconstruct the Wigner
function of an experimental setting [49], [50]. Essentially, the technique relies
on the fact that an experiment can be prepared and repeated a large amount of
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times, thus providing a projection of the Wigner function. For example, one may
first measure the position of a particle for a large enough number of times and
then repeat the same experiment measuring the momentum of the particle. In
practice, this provides a projection of the Wigner function over the position and
momentum directions of the phase-space frame. Then, it is possible to apply
an inverse Radon transformation which reconstruct the (higher dimensional)
function fW [49], [50], along with its (eventual) negative values (see Fig. 1).

Figure 1: Artistic representation of a Wigner quasi-distribution function along
with its projections (integral) over space and momentum.

An interpretation of the negative values in fW can now be provided. The
Wigner quasi-distribution function is the quantum mathematical object which
most closely corresponds to a classical distribution function. It is utilized to
compute the average value of macroscopic variables but it is not a proper distri-
bution function as it may have localized negative values. Now, classical particles
are always localized in a precise point of the phase-space, and a ensemble of clas-
sical particles can define a proper distribution function. But when dealing with
quantum particles, the Heisenberg principle of uncertainty prevents such local-
ization, forcing the description of a particle to an area of the phase-space bigger
∆x∆p = h̄

2 . In other words, this means that if the position is well known,
i.e. highly localized, then the momentum is delocalized and vice versa. This
feature has to be included in a proper description of the quantum world and is
clearly exhibited by the appearance of negative values in the Wigner function.
Therefore, one may infer that areas of the phase-space with a negative sign
are essentially regions which are experimentally forbidden by the uncertainty
principle [50].

23



3. The Wigner Monte Carlo method for single-body systems

The Monte Carlo theory to solve the single-body Wigner equation repre-
sents an important achievement in the field of simulations of quantum systems
composed of one quantum particle only. In this section, we focus on the signed
particle Monte Carlo (MC) method [64], [65], [66] and a particular attention
to details is given in order to put the reader in the conditions to duplicate
the method and the results. This method has been recently validated against
well-known numerical tests.

This is an important section of this paper. All details provided here need
attention to be understood. The next two sections, and the applications shown
at the end of this paper, depend on this section. They cannot be understood
without a comprehension of this section. Therefore, we strongly recommend
the reader to carefully go through the mathematical details. Furthermore, an
implementation of the Wigner MC method described here is available at [87].
The reader is adviced to download the source code and study it for a complete
understanding.

3.1. Semi-discrete phase-space

We recall that in the Wigner formulation of quantum mechanics [11] a quan-
tum system consisting of one particle is completely described in terms of a
phase-space quasi-distribution function fW (x;p; t) evolving according to equ.
(10). Thus, our aim is to reconstruct the function fW at a given time. We start
by reformulating the Wigner equation in a semi-discrete phase-space with a con-
tinuous spatial variable x and a discretized momentum p described in terms of
a step ∆p = h̄π

LC
, where LC is a free parameter defining the discretization (and

a study on the dependence of the quality of a solution in function of LC has
been carried out in [68]). Now, the semi-discrete Wigner equation reads:

∂fW

∂t
+
h̄

m

M∆p

h̄
· ∇xfW =

+∞
∑

M ′=−∞

VW (x;M′; t)fW (x;M−M′; t), (45)

where, for convenience, we use the notation fW (x;M; t) = fW (x;M∆p; t), with
M = (M1, . . . ,Md) a set of integers with d elements, andM∆p = (M1∆p1, . . . ,Md∆pd).
In particular, once one knows the Wigner function of a system, it is useful to
evaluate the expectation value 〈A〉(t) of some generic physical quantity, de-
scribed by a phase-space function, or c−number, A = A(x; k) at a given time t.
Thus, our computational problem reduces to the calculation of the inner prod-
uct (A, fW ) with the solution of (10). It can be shown that this task can be
reformulated in a way which involves the solution of the adjoint equation. Doing
this, we first obtain an integral form of (10), and then the adjoint equation.
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3.2. Integral formulation

The semi-discrete Wigner equation (45) can be reformulated in a integral
form. First, one defines a function γ as

γ(x) =

∞
∑

M=−∞

V +
w (x;M) =

∞
∑

M=−∞

V −
w (x;M), (46)

where V +
w is the positive part of Vw, i.e. it gives VW if Vw > 0 and 0 otherwise,

and V −
w is the negative part defined similarly (the equality was first proven

in [66], then in [64] and, again, in [65]). Let us, now, add and substract the
term γ(x(t′)) to the equation (45). Furthermore, let us introduce the following
quantity:

Γ(x(t′),M,M′) = V +
w (x(t′);M−M′)−V +

w (x(t′);−(M−M′))+γ(x(t′))δM,M′ .

(47)
By integrating over the interval (0, t), supposing that initial conditions are im-
posed at time 0, one can include both boundary and initial conditions in the
formulation and obtain the following equation:

fW (x;M; t)− e−
∫

t

0
γ(x(y))dyfi(x(0);M) =

∫ t

0

dt′
∞
∑

M′=−∞

fW (x(t′);M′; t′)Γ(x(t′),M,M′)e−
∫

t

t′
γ(x(y))dy = (48)

∫ ∞

0

dt′
∞
∑

M′

∫

dx′fW (x′;M′; t′)Γ(x′,M,M′)e−
∫

t

t′
γ(x(y))dyθ(t− t′)δ(x′ − x(t′))θD(x′),

where, to ensure the explicit appearance of the variables Q = (x,M, t) and
Q′ = (x′,M′, t′), the kernel has been augmented by the θ and δ functions which
retain the value of the integral unchanged. In particular θD keeps the integration
within the simulation domain (if any). In the same way, the expectation value
of the physical quantity A at time τ is augmented and reads:

〈A〉(τ) =
∫

dt

∫

dx

∞
∑

M=−∞

fW (x;M; t)A(x;M)δ(t− τ) =

∫

dQfW (Q)Aτ (Q),

(49)
(note the implicit definition of the symbol Aτ (Q)).

3.3. Adjoint equation

One can rewrite the expectation value (49) by formally introducing the ad-
joint equation of (48) which has a solution g and a free term g0 determined
below:

f(Q) =

∫

dQ′K(Q,Q′)f(Q′)+fi(Q), g(Q′) =

∫

dQK(Q,Q′)g(Q)+g0(Q
′).
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We now multiply the first equation by g(Q), and integrate over Q. Then, we
multiply the second equation by f(Q′) and integrate over Q′. Finally, we sub-
stract the two equations. One obtains:

∫

dQfi(Q)g(Q) =

∫

dQ′g0(Q
′)f(Q′)

∫

dQ′fi(Q
′)g(Q′) =

∫

dQg0(Q)f(Q),

where the dummy variables have been exchanged for a more convenient com-
parison with (49). In particular, this shows that:

g0(Q) = Aτ (Q);

〈A〉 =

∫ ∞

0

dt′
∫

dx′
∞
∑

M′=−∞

fi(x
′;M′)e−

∫

t′

0
γ(x′(y))dyg(x′;M′; t′), (50)

where x′(y) is the trajectory initialized by (x′,M′, t′), and x(0) = x′. Thus,
one obtains the adjoint equation by integration on the unprimed variables:

g(x′;M′; t′) = Aτ (x
′,M′, t′) + (51)

∫ ∞

0

dt

∞
∑

M=−∞

∫

dxg(x;M; t)Γ(x′,M,M′)e−
∫

t

t′
γ(x(y))dyθ(t− t′)δ(x′ − x(t′))θD(x′).

This equation is further modified by reverting the parametrization of the field-
less trajectory. Now (x(t′) = x′′, M, t′) initialize the trajectory and the variable
x = x(t) becomes the time dependent variable. Finally, the spatial coordinates
for the function g becomes x′(t). Thus one obtains:

g(x′;M′; t′) = Aτ (x
′,M′, t′) + (52)

∫ ∞

t′
dt

∞
∑

M=−∞

g(x′(t);M; t)Γ(x′,M,M′)e−
∫

t

t′
γ(x′(y))dyθD(x′).

In the same way, by reverting the parametrization of the field-less trajectory,
equation (50) is reformulated, with the initialization changing from (x′,M′, t′)
to (xi = x′(0),M′, 0):

x′(y) = xi(y) = xi +
M′∆p

m
y; x′ = x′(t′) = xi(t

′); dx′ = dxi

〈A〉 =
∫ ∞

0

dt′
∫

dxi

∞
∑

M′=−∞

fi(xi;M
′)e−

∫

t′

0
γ(xi(y))dyg(xi(t

′);M′; t′). (53)

3.4. Signed particle method

By consecutive iterations of (52) into (53) it is now possible to depict a
numerical method based on particles. The zero-th order term reads:

< A >0 (τ) =

∫ ∞

0

dt′
∫

dxi

∞
∑

M′=−∞

fi(xi;M
′)e−

∫

t′

0
γ(xi(y))dyA(xi(t

′);M′)δ(t′−τ).
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By applying the Monte Carlo theory for the computation of integrals, one can
interpret part of the integrand as a product of conditional probabilities in the
following way. Assuming that fi is normalized to unity, one generates a set
of random points (xi,M

′) at time 0 which initialize the particle trajectories
xi(y). Thus, the exponent gives the probability for a particle to remain over
the trajectory provided that the change-of-trajectory rate is represented by the
function γ. In practice, this probability filters out these particles, such that
the randomly generated change-of-trajectory time is less than τ . If a particle
stays in the trajectory until time τ , then it contributes to < A >0 (τ) with a
value equal to the rest of the integrand, i.e. fi(xi;M

′)A(xi(τ),M
′). Otherwise,

particles which have experienced a change-of-trajectory event do not contribute
at all. Finally, < A >0 (τ) is estimated by averaging over the set of N initialized
particles.

Similarly, the first order term of the iteration term is obtained by replacing
the term g(xi(t

′);M′; t′) in (53) by the kernel of (53) specifically rewritten (in
other words in (53) we substitute x′ with x1 = xi(t

′)). Note that the trajectory
in the exponent is now initialized by the values (x1,M, t′):

< A >1 (τ) =

∫ ∞

0

dt′
∫

dxi

∞
∑

M′=−∞

fi(xi;M
′)e−

∫

t′

0
γ(xi(y))dy ×

∫ ∞

t′
dt

∞
∑

M=−∞

g((x1(t);M; t)Γ(x1,M,M′)e−
∫

t

t′
γ(x1(y))dyθD(x1).

Then, we replace the function g((x1(t);M; t) with the free term of equ. (53) at
point A(x1(t),M, t)δ(t − τ). Finally, we augment the equation by completing
some of the probabilities enclosed in curly brackets and we partially reorder
some of the terms to obtain:

< A >1 (τ) =

∫ ∞

0

dt′
∫

dxi

∞
∑

M′=−∞

fi(xi;M
′)
{

γ(xi(t
′))e−

∫

t′

0
γ(xi(y))dy

}

×

θD(x1)

∫ ∞

t′
dt

∞
∑

M=−∞

{

Γ(x1,M,M′)

γ(xi(t′))

}

{

e−
∫

t

t′
γ(x1(y))dy

}

A(x1(t),M, t)δ(t− τ).

One can give a similar Monte Carlo interpretation. A particle is now initialized
at (xi,M

′, 0). It follows the trajectory until time t′, i.e. the time the particle
leaves the initial trajectory (or equivalently changes its coordinates in the phase-
space). The time t′ is given by the probability density in the first curly brackets.
Indeed, the enclosed term, if integrated over the time interval (0,∞), gives unity.
Furthermore, the exponent represents the probability for a particle of staying
in the same trajectory until time t′, while γ(xi(t

′))dt′ is the probability to
leave that trajectory in the interval (t′, t′ + dt′). The phase-space position now
becomes (x1 = xi(t

′),M′) at t′ and the evolution continues (if the particle is still
in the simulation domain, otherwise its contribution is zero). The term in the
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next curly bracket is interpreted as a source of momentum change from M′ to M

(locally in space at point x1 and at the time of scattering t′). Thus, at moment
t′ the particle initializes the trajectory (x1,M) and, with the probability given
by the exponent in the last curly brackets, remains over the trajectory until time
τ . In particular, t is set to τ by the δ function provided that t′ < τ , otherwise
the contribution is zero. We note however that in this case the particle has a
contribution to the zero-th iteration term.

In the very same way, one can calculate the first three terms and sum them
up to show how to continue with higher order terms:

2
∑

s=0

< A >s (τ) =

∫ τ

0

dti

∫

dxi

∞
∑

Mi=−∞

fi(xi;Mi)e
−

∫ ti
0

γ(xi(y))dy

⇑xi,Mi,0

×
[

A(x1,Mi)
⇑x1=xi(ti)

δ(ti − τ) +

∫ τ

ti

dt1

∞
∑

M1=−∞

θD(x1)Γ(x1,M1,Mi)e
−

∫ t1
ti

γ(x1(y))dy

⇑x1,M1,ti

×
[

A(x2,M1)
⇑x2=x1(t1)

δ(t1 − τ) +

∫ τ

t1

dt2

∞
∑

M2=−∞

θD(x2)Γ(x2,M2,M1)e
−

∫ t2
t1

γ(x2(y))dy

⇑x2,M2,t1
A(x3,M2)
⇑x3=x2(t2)

δ(t2 − τ)

]]

.

The initialization coordinates of the novel trajectories are denoted by the symbol
⇑.

It is clear that the iteration expansion of 〈A〉 branches, and the total value is
given by the sum of all branches. Thus instead of changing trajectory, one may
interpret the sum as three new trajectory pieces or, equivalently, three signed

particles appearing:

Γ(x1,M,M′)

γ(x1)
=

{

V +
w (x1,M−M′)

γ(x1)

}

−
{

V −
w (x1,M−M′)

γ(x1)

}

+{δM,M′} . (54)

A short analysis of the last term suggests that the initial (parent) particle sur-
vives and two more particles (one positive and one negative) are generated with
the first two probabilities (in curly brackets). Equivalently, one generates the
first state M−M′ = L with probability

V +
w (x1,L)

γ(x1)
.

Thus, using the same probability, or simply a new random number, one generates
another value, say L′, and obtains a second state M′ −M = L′. It is easy to
see that, actually, these values can be combined into a single choice of L by
reordering the sum over M for the second term so that V −

w (x1,M−M′) appears
in the place of V +

w . Indeed, we recall that if V +
w (L) is not zero then V +

w (−L) = 0
and V −

w (−L) = V +
w (L). In this way the following two states, with the second

one having a flipped sign, have the same probability to appear:

M−M′ = L, M−M′ = −L;
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or equivalently
M = M′ + L, M = M′ − L.

We can now summarize the outcomes obtained so far. By applying the kernel
of (53) in the form (54), one can order the terms of the resolvent expansion of
(53). This is utilized to construct a transition probability for the numerical
Monte Carlo trajectories which consist of pieces of Newton trajectories linked
by a change of the momentum from M to M′ according to Γ. These trajectories
are interpreted as moving particles under events which change their phase-space
coordinates. The exponent in the formulas gives the probability that a particle
remains on its field-less Newton trajectory with a changing rate equal to γ.
If the particle does not change trajectory until time τ , particles contribute to
< A >0 (τ) with the value fi(xi;M

′)g(xi(τ);M
′), otherwise they contribute to

a next term of the expansion. It can be proved that a particle contributes to one
and only one term of this expansion. Thus, the macroscopic value < A > (t) is
estimated by averaging over N particles.

Therefore, by exploiting the appearance of the term Γ, it is possible to depict
a Monte Carlo algorithm for the ballistic, single-body, semi-discrete Wigner
equation (45). After any free flight the initial particle creates two new particles
with opposite signs and momentum offset (around the initial momentum) equal
to +L and −L where L = M − M′. The initial particle and the two newly
created represent three contributive terms of the series. We, thus, have a Monte
Carlo algorithm for our model.

3.5. The annihilation technique

It can be demonstrated that the process of creation of new couples is ex-
ponential [66]. By noting that, in the above depicted Monte Carlo method,
particles are indistinguishable and annihilate when they belong to the same
phase-space cell and have opposite signs, it is possible to remove a significant
number of particles during the simulation. The technique has been largely doc-
umented in [44] and we only sketch the main tenets here. If one fixes a record-

ing time step at which we check if particles belong to the same region of the
phase-space with negative signs, then they are removed and all non-annihilating
particles are kept in the simulation. These observations highlight the possibil-
ity of removing, periodically, all particles not contributing to the calculation
of the Wigner function or, in other words, one can apply a renormalization of
the numerical average of the Wigner quasi-distribution by means of a particles
annihilation process. This is in accordance to the Markovian character of the
evolution to progress at consecutive time steps so that the final solution at a
given time step becomes the initial condition for the next step.

This technique has proved to be very efficient, especially for the simulation
of realistic objects which typically involve several tens or even hundreds of mil-
lions of initial particles. Without this technique, time-dependent Monte Carlo
simulations of the Wigner equation would be practically impossible tout court.
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4. Extension to Density Functional Theory

The simulation of quantum many-body systems is a complex task which is
well-known to require immense computational resources. It is also an impor-
tant problem which touches many aspects of our everyday life. For example,
they allow the comprehension, and thus the design and exploitation, of com-
plex chemical reactions, new materials, new electronics, etc. Therefore it is not
surprising that a very early interest has been shown in this direction. In 1926
a first attempt to simplify the quantum many-body problem, although in the
stationary case, was done by introducing an approximate method to find the
electronic structure in terms of a one-electron ground-state density ρ(x), [73],
[74]. The Thomas-Fermi theory, as it is known today, introduces too many over-
simplifications to be of any pratical use but it represents a foundational result
for the development of DFT. Later on, Slater combined the ideas of Thomas
and Fermi with the Hartree’s orbital method [70], [71], introducing for the first
time a local exchange potential. Then the Hohenberg-Kohn theorem proved
that, in principle, an exact method using the one-electron ground-state density
ρ(x) [72] can be depicted and the Kohn-Sham system was introduced from the
homogeneous quantum electron gas theory [76]. The time-dependent counter-
part of the Hohenberg-Kohn theorem was introduced in 1984 which is known as
the Runge-Gross theorem [77]. One should note that this theorem guarantees
the validity of the time-dependent Kohn-Sham system only for the calculations
of the ground-state properties. Nothing is proved about the excited states. Fi-
nally, it is also known that the mapping from a given time-dependent potential
to time-dependent density is not invertible and a time-dependent current-density
functional theory is required [78].

Nowadays, the density functional theory (DFT) can be considered the most
popular and utilized tool [75]. In this section we introduce an extension of the
Wigner MC method to DFT as a way to simulate many-body problems. This
section is based on the work described in [39].

4.1. The Kohn-Sham density functional theory

DFT relies on our capability of calculating the wave-function of a single-
electron Schrödinger equation. Essentially, the quantum many-body problem is
reduced to a system of coupled single-electron equations, known as the Kohn-
Sham system, and effects such as electron-electron interaction are described
in terms of the so-called density functional. This is the essence of both time-
independent and time-dependent approaches in DFT [76], [77]. This simplifica-
tion allows the simulation of many-body problems in acceptable computational
times, but the price to pay for it is that the exact mathematical expression for
the density functional is known only for simple cases and further approximations
are introduced for more complex systems. Despite the difficulties, nowadays one
can choose among a plethora of functionals, e.g. the local density approximation
(LDA) [76], the generalized gradient approximation [79] and the B3LYP [80].
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Now, the dynamics of quantum many-body systems is described by the
many-body Schrödinger equation:

ih̄
∂

∂t
Ψ = ĤΨ, (55)

where the unknown is the (complex) wave-function Ψ = Ψ(x1, . . . ,xn), and the
Hamiltonian Ĥ, accounts for the various forces involved in the problem (see for-
mulas (20) and (27) for example). The resolution of (55) represents an incredible
mathematical challenge even when approached by numerical techniques. It is
worth to mention that attempts in this direction have been made (direct MC
minimization techniques [69]) but, up to now, they only allow the calculation
of the stationary ground state.

Despite its limitations, the time-dependent Kohn-Sham system greatly re-
duces the difficulties involved in (55) and allows practical and useful (but not
yet chemical/quantitative) simulations of quantum many-body systems. Indeed,
we now deal with a set of n single-body Schrödinger equations coupled to each
other by means of an artificial density functional veff(x) which is local [75]. One
should note that the locality of this functional introduces severe restrictions to
the time-dependent simulations of strongly correlated electron systems.

In practice, the time-dependent Kohn-Sham system consists of the following
set of equations (i = 1 . . . n)

ih̄
∂Φi

∂t
(x, t) =

(

− h̄
2∇2

2mi
+ Ueff (x)

)

Φi (x, t) (56)

from which the one-electron density can be calculated in the following way:

ρ(x) =
∑

i

|Φi(x)|2, (57)

where the sum is performed over the states below the Fermi energy. The many-
body effects are included in the effective potential Ueff = Ueff(x) which can
be expressed in terms of an external potential (usually representing the poten-
tial due to the nuclei of a molecule), the Hartree potential and an exchange-
correlation potential

Ueff(x) = Uext(x) + e2
∫

dx′ ρ(x′)

|x− x′| + Uxc [ρ] (x). (58)

Finally, one should note that there is no unique way to express the density
functional Uxc. Many choices are available (e.g. [76], [79] and [80]). In any case,
given a functional, it is possible to solve the set of equations (56) from which
one obtains the one-electron density ρ(x).

4.2. The Wigner density functional theory
By applying the Wigner-Weyl transform (31) to every Schrödinger equation

of the set (56), with U(x) = Ueff(x), one obtains a new time-dependent Kohn-
Sham system expressed in terms of the corresponding n Wigner equations, i.e.:

∂f iw
∂t

+
p

mi
· ∇xf

i
w = Q[f iw], (59)
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where the Wigner potential is expressed in terms of an effective potential

Vw(x,p, t) =
i

(2π)dh̄d+1

∫

dx′e−ip·x
′

h̄

(

Ueff(x+
x′

2
, t)− Ueff(x− x′

2
, t)

)

. (60)

Given an adequate effective potential Ueff(x) which, in turn, depends on the
choice of the exchange-correlation functional, the quantum many-body problem
now consists of solving the set of coupled equations (59). This system, of course,
being based on the same assumptions, is affected by the same problems of
standard DFT. The choice of the exchange-correlation potential is not unique
and difficult to select, there is no guarantee that the excited states are correct,
etc. This approach, if applied to any computational quantum problem, will
essentially give the same answers given by the standard DFT. Nevertheless, two
important advantages appear in this new model. First, the Wigner formalism
is based on the concept of a quasi-distribution function and, as such, offers
a much more intuitive representation of the simulated system. For example,
one can discuss the system in terms of single-electron distribution functions
and visualize the time-dependent energy distribution which can give profound
insights about the dynamics involved. Second, the Wigner MC method, based
on the Iterative MC method, is known to be highly scalable outperforming other
numerical approaches (one can reach very deep levels of parallelization almost
trivially) [81], [82]. This opens the way towards simulations of very complex
structures.

5. The Wigner Monte Carlo method for many-body systems

Traditionally ab-initio simulations, based on first principles of quantum me-
chanics, are known to be an incredibly difficult task to perform. As a matter
of fact, they require an immense amount of computational power. Although
their complexity, it is important to be able to simulate such systems, since they
allow the simulation of so-called strongly correlated systems, which are relevant
in both applied physics and chemistry. In this section, the Wigner MC method
for the single-body equation is generalized to the quantum many-body problem
without introducing any supplementary physical approximation.

5.1. Semi-discrete phase-space

As done previously for the single-body Wigner equation, one starts by refor-
mulating the many-body Wigner equation (23) in a semi-discrete phase-space
with continuous spatial coordinates x and discretized momenta p expressed as
multiples of the quantity ∆p = h̄π

LC
, where LC is the usual parameter which

specifies the momentum discretization.
The semi-discrete many-body Wigner equation reads:

∂fW

∂t
(x;M; t) +

n
∑

k=1

Mk∆p

mk
· ∇xk

fW =

+∞
∑

M=−∞

fW (x;M; t)VW (x;M; t), (61)
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with M = (M1,M2, . . . ,Mn),
∑+∞

M=−∞ =
∑+∞

M1=−∞

∑+∞
M2=−∞ · · ·∑+∞

Mn=−∞,
and

VW (x;M; t) =
i

πdnh̄dn+1

∫

dx′e−(
2i
h̄ )

∑n
k=1

x′

k·Mk∆p
[

V (x+
x′

2
; t)−V (x+

x′

2
; t)

]

.

Note that, now, the momentum of the i-th particle is expressed as a set of d
integers Mi = (M i

1, . . . ,M
i
d) and Mi∆p = (M i

1∆p1, . . . ,M
i
d∆pd) where ∆p =

(∆p1, . . . ,∆pd).

5.2. Integral formulation

Equation (61) can be rewritten in an integral form. To this aim, we first
define the function γ in a many-body context as:

γ(x) =

∞
∑

M=−∞

V +
W (x;M), (62)

where V +
W is, again, the positive part of VW . Then, the equation (61) can be

rewritten by adding and substracting the term γ(x).
In the same way, the quantity Γ can be generalized and has the following

expression:

Γ(x;M;M′) = V +
W (x;M−M′)− V +

W (x;−(M−M′)) + γ(x)δM,M′ . (63)

As usual, we assume that the evolution of an initial condition fi(x;M) starts
at time 0and, by following the same strategy employed in the single-bodyWigner
MC method, one can rewrite the semi-discrete many-body Wigner equation in
the form of a Fredholm integral equation of second kind:

fW (x;M; t)− e−
∫

t

0
γ(x(y))dyfi(x(0);M) = (64)

∫ ∞

0

dt′
+∞
∑

M′=−∞

∫

dx′fW (x′;M′; t′)Γ(x′;M;M′)e−
∫

t

t′
γ(x(y))dyθ(t− t′)δ(x′ − x(t′))θD(x′).

One note that, in order to ensure the explicit appearance of the variables Q =
(x;M; t) and Q′ = (x′;M′; t′), the kernel has been augmented by the θ and δ
functions. Following the generalization of the signed particle MC method, one
expresses the many-body expectation value of the physical quantity A = A(Q)
at time τ as:

〈A〉(τ) =
∫

dt

∫

dx

∞
∑

M=−∞

fW (x;M; t)A(x;M)δ(t− τ) =

∫

dQfW (Q)Aτ (Q).

(65)
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5.3. Signed particle method

Formally speaking, one quickly realize that the equations so far recovered
are in the same shape as the ones of the single-particle Wigner MC method.
This suggests that one can simply follow the same procedure and express the
expectation value (65) as a Liouville-Neumann series which help depicting a
signed particle MC method for the many-body Wigner equation.

Thus, it is straightforward to obtain the zero-th order term of the series
which reads:

〈A〉0(τ) =
∫ ∞

0

dt′
∫

dx

∞
∑

M′=−∞

fi(x;M
′)e−

∫

t′

0
γ(x(y))dyA(x(t′),M′)δ(t′ − τ).

As usual, the mathematical Monte Carlo theory for solving integrals suggests
to consider part of the integrand as a product of conditional probabilities and,
if fi is normalized to unity, one generates random phase-space points (x;M′)
at the initial time 0 (note that, in this context, a virtual particle represents
now a set of n phase-space coordinates). These points initialize the trajectories
of the particles x(y) and the exponent, as for the single-body case, gives the
probability for a particle to remain over the trajectory provided that the out-

of-trajectory event rate is γ. This probability filters out these particles, such
that the randomly generated out-of-trajectory time is less than τ . If the particle
remains in the same trajectory till time τ , it has a contribution to 〈A〉0(τ) equal
to fi(x,M

′)A(x(τ),M′), otherwise it does not contribute at all. Thus, 〈A〉0(τ)
is estimated by the mean value obtained from the N initialized particles.

In the same way, one can proceed further and show that the first order term
of the many-body Liouville-Neumann series reads:

〈A〉1(τ) =
∫ ∞

0

dt′
∫

dx

∞
∑

M′=−∞

fi(x,M
′)
{

γ(x(t′))e−
∫

t′

0
γ(x(y))dy

}

×θD(x′)

∫ ∞

t′
dt

∞
∑

M=−∞

{

Γ(x′;M;M′)

γ(x(t′))

}

{

e−
∫

t

t′
γ(x′(y))dy

}

A(x′(t);M; t)δ(t− τ),

and, again, a physical interpretation can be given which is a generalization of the
single-body case. In particular, now a particle is initialized at (x,M′, 0) which
follows the trajectory until time t′ given by the probability density in the first
curly brackets. Then, the particle phase-space position is x′ = (x(t′);M′; t′)
and the evolution continues if the particle is still in the simulation domain
(otherwise the contribution is zero). A similar interpretation can be given to
the term in the next curly bracket which brings the particle from M′ to M

(locally in space at the time t′). Thus, at moment t′ the particle initializes the
trajectory (x′;M) and, with the probability given by the exponent in the last
curly brackets, remains over the trajectory until time τ .

The first three terms of the Liouville-Neumann series show how to continue
with higher order terms [40]. As for the single-body case, the expansion of 〈A〉
branches and the total value is given by the sum of all branches. We can, thus,
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equivalently talk in terms of three appearing particles even for the many-body
WMC method (note that, in this context, by particle one means a mathematical
point defined in a nd-dimensional phase-space), in other words:

Γ(x;M;M′)

γ(x)
=

{

V +
W (x,M−M′)

γ(x)

}

−
{

V −
W (x,M−M′)

γ(M)

}

+ {δM,M′} . (66)

According to the last term, the initial parent particle survives and a couple of
new signed particles are generated with the first two probabilities. In other
words, we generate the first many-body momentum state M − M′ = L with
probability:

V +
W (x,L)

γ(x)
,

and, with the same probability, we generate another value, say L′, for the second
state M′ −M = L′. In the same way, by exploiting the term Γ(x;M;M′), it is
possible to depict a MC algorithm for the integration of the many-body semi-
discrete Wigner equation (61). After any free flight the initial particle creates
two new particles with opposite signs and momentum offset (around the initial
momentum) equal to +L and −L with L = M − M′. The initial particle
and the created couple represent three contributive terms to the many-body
Liouville-Neumann series.

As a concluding remark, one should note that this method implies high scal-
ability of the algorithm (being a MC method). In particular, the scalability
does not depend on the number of particles involved in the many-body prob-
lem. Indeed, the solution is constructed by an ensemble of field-less Newtonian
particles which are independent from each other. This represents an important
advantage for complex systems where the number of involved bodies can be
relatively large.

5.4. Notes on computational complexity

Some comment on the computational complexity of the many-body Wigner
MC method are given. It is relatively easy to demonstrate that the complexity
of the part of the algorithm dealing with the evolution of the phase-space co-
ordinates of the virtual particles increases linearly with the number of bodies
involved [82]. But the calculation of the Wigner kernel (24) is now the bottle
neck of the algorithm, as it is equivalent to the calculation of a function defined
over a space which dimensions increase exponentially with the number of bodies
involved. While this does not represent a problem for non-interacting fermions
(where the function γ = γ(x1, . . . ,xn) is time-independent, even in the case of
entangled particles), it is a severe limitation when all interactions have to be
taken into account in a consistent way, since the Coulombic interactions have
to be updated at every time step.

6. Applied Quantum Mechanics in the Wigner Formalism

The works of Wigner [11], Moyal [45], Groenewold [57], Dias et al. [47]
put the Wigner formulation of quantum mechanics on solid mathematical foun-
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dations and allow the description of quantum mechanical systems without the
need for wave-functions. As a matter of fact, these systems can be completely
described in terms of quasi-distribution functions without recurring to any of
the concepts of the Schrödinger formalism. In this section we focus on several
quantum systems: the hydrogen atom, the lithium atom, the boron atom, the
H2 molecule, and systems of identical Fermions. We show that it is possible to
compute the corresponding Wigner quasi-distribution functions of these systems
and, consequently, their spatial probability distributions along with their cor-
responding macroscopic variables. These are important results. Indeed, on the
one hand they clearly show that it is possible to do quantum mechanics with-
out wave-functions. On the other hand, they show how convenient the Wigner
formalism is when applied to concrete and practical quantum systems.

Figure 2: Wigner quasi-distribution function of the 1s Hydrogen state for θ = 0.
Units are chosen so that the Bohr radius is a = 1.
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Figure 3: Wigner quasi-distribution function of the 1s Hydrogen state for θ = π
2 .

Units are chosen so that the Bohr radius is a = 1.

6.1. The hydrogen atom

In this section we focus on the hydrogen atom, which has a special signifi-
cance in quantum mechanics, and show that it is possible to calculate analyti-
cally its corresponding Wigner quasi-distribution functions in the ∗−genproblem
context. This is the first example showing concretely that it is possible to de-
scribe quantum mechanical objects by using quasi-distributions only.

As demonstrated in [83], the bound states of the hydrogen atom are analit-
ically expressed as

fnlmW (x;p) = D̂nlm

(

∇x,
∂

∂b1
,
∂

∂b2

)

I(x,p, θ, b1, b2)|b1=b2=
1

na
, (67)

where θ is the angle between the two vector x and p, a is the Bohr radius,
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(n, l,m) the principle, the angular momentum and the magnetic quantum num-
bers respectively,

I(x,p, θ, b1, b2) =

∫ 1

0

du
e

4iuxp cos θ
h̄

C(u)
e−2xC(u), (68)

and

C(u) =

√

ub21 + (1− u)b22 + 4u(1− u)
( p

h̄

)2

.

The operator D̂nlm acts on the function I = I(x,p, θ, b1, b2) and is defined in
details in [83].

For instance, the 1s state (n, l,m) = (1, 0, 0), the 2s state (n, l,m) = (2, 0, 0),
and the 2px state (n, l,m) = (2, 1, 0) read respectively

f100W (x;p) = D̂100I(x,p, θ, b1, b2)|b1=b2=
1

a

f200W (x;p) = D̂200I(x,p, θ, b1, b2)|b1=b2=
1

2a

f210W (x;p) = D̂210I(x,p, θ, b1, b2)|b1=b2=
1

2a
,

with

D̂100 =
2e

−2irp cos θ
h̄

π3a3
∂4

∂b21∂b
2
2

D̂200 = −e
−2irp cos θ

h̄

4π3a3

[

∂

∂b1
− b1

∂2

∂b21

] [

∂

∂b2
− b2

∂2

∂b22

]

D̂210 =
2e

2irp cos θ
h̄

(2π)3a5

(

∂

∂b1

1

2b1

∂

∂b1

)(

∂

∂b2

1

2b2

∂

∂b2

)(

∂2

∂x2
+ 4i

pz

h̄

∂

∂x

)

e−4irp cos θ/h̄,

(69)

and the 1s bound state Wigner function f100W is shown in Figs. 2, 3 for θ = 0
and θ = π

2 respectively.
In particular, the case θ = π

2 corresponds to a classical orbit [83] and it is
presented in Fig. 3. It is interesting to note that the corresponding Wigner
function is non-negative in any point of the phase-space, i.e. it behaves as a
proper distribution function. Instead, negative values appear for the case θ = 0
as one clearly sees from Fig. 2, a clear indication that we are in the presence of
dominant quantum effects. One also notes that the quasi-distribution functions
represented in Figs. 2 and 3 give more information on the state of the electron
in the potential generated by the nucleus. For example, one clearly sees that the
peak in the spatial position corresponds to x = a, i.e. the highest probability of
finding the electron is on a orbital which radius is equal to the Bohr radius, and
the energy peak is in proximity of the ground state of the system (as expected).
The same conclusions can be inferred in the Schrödinger formalism but in terms
of a rather more abstract perspective.
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Figure 4: Nucleus potential created by a Lithium nucleus.

6.2. The lithium and boron atoms

We now focus on the simulation of the stationary states for the lithium and
boron atoms. The lithium atom consists of one nucleus with charge +3e and 3
electrons with negative charge −e, interacting with the nucleus and each other.
The boron atom consists of one nucleus with charge +5e and 5 electrons.

For both elements, we apply the Wigner MC DFT method and simulate the
system of equations (59). In particular, the experiment for lithium and boron
consists of computing the stationary configuration of electrons starting from a
non-stationary initial condition, thus testing the capability of the method to
stay in a stationary regime. These are non-trivial experiments since the Wigner
MC method is based on Newtonian particles constantly moving as free-field
objects. Reaching a stationary regime and keeping it for a long simulation time
is a clear indication of the robustness and reliability of the method.

We choose to simulate the lithium atom as its orbitals are known to have a
spherical symmetry. The boron atom, instead, is chosen because the symmetry
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Figure 5: Density of an electron in Lithium 1s orbital.

is not valid anymore for its 2p orbital, thus representing a more difficult numeri-
cal task. In both experiments the nuclei are modeled as non-screened Coulombic
charges and, in order to avoid singularities in the numerical treatment of the
nuclei, we utilize the following modified potential [84]:

Vion(x) =
Ze

4πǫ0

(

(x− xion)
2
+ 1

2a
2
)

1

2

, (70)

where, as usual, Z is the atomic number, a is the Bohr radius and xion is the
position of the center of the nucleus. One should note that this choice does not
represent a restriction for the method and one could use any other available
mathematical model, such as pseudo-potential models, etc.

The initial conditions for the Wigner functions are represented by non-
stationary states which are directly proportional to the electron density of a
hydrogenic state in space and Gaussian in energy (around some initial energy

40



Figure 6: Density of an electron in Lithium 2s orbital (logarithmic scale).

E0). In particular, for the lithium atom (2 electrons in 1s state and 1 electron
in 2s state), the initial conditions for the 3 electrons are:

f1sw (x;p; 0) = A1se

−

(

p2

2m
−E0

)

σ2

E e−
|x−xion|

a (71)

(two times) and

f2sw (x;p; 0) = A2se

−

(

p2

2m
−E0

)

σ2

E e−
|x−xion|

a

(

1− |x− xion|
a

)

, (72)

where A1s and A2s are normalization constants (the density probability cor-
responding to every Wigner quasi-distribution is normalized to unity, i.e. one
electron per equation) and σE is the dispersion in energy. For the boron atom,
the initial conditions consist of two electrons in the state (71), two electrons in
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Figure 7: Density of an electron in Boron 1s orbital.

the state (72) and one electron in an initial state corresponding to a density
directly proportional to a 2p state:

f2pw (x;p; 0) = A2pe

−

(

p2

2m
−E0

)

σ2

E e−
|x−xion|

a (x− xion)
2
. (73)

Both systems are evolved in time until a stationary solution is reached.
For the sake of simplicity, we choose the following (LDA) exchange-correlation

functional [72] which, in atomic units, reads:

Uxc [ρ] (x) = − 1

π

[

3π2ρ(x)
]

1

3 . (74)

One should note that our method is not limited by the choice of any particular
exchange-correlation functional and other models for Uxc [ρ] can be utilized.

The results for the lithium atom are reported in Fig.4, Fig.5 and Fig.6. In
particular, Fig.4 shows the potential generated by the nucleus.It is clear from
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Figure 8: Density of an electron in Boron 2s orbital (logarithmic scale).

this last figure how the dynamics of the wave packet is affected in proximity of
the nucleus. As a matter of fact, a zero node can be observed in the position
corresponding to the nucleus, indicating that no couple of signed particles is
generated in that area. Figs.5 and 6, instead, show the electron probability
densities corresponding to time equal to 50 attoseconds, for the 1s and 2s states
respectively. The electron states have evolved towards a stationary state and
do not change any longer.

The results concerning the boron atom are reported in Fig.7, Fig.8 and Fig.9.
In particular, Fig.7, Fig.8 and Fig.9 show the electron probability densities
corresponding to time equal to 50 attoseconds, for the 1s, 2s and 2p states
respectively. Again, the system converges to a stationary regime. Furthermore,
the 2p orbital, not spherically symmetric, remains stationary in time.
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Figure 9: Density of an electron in Boron 2p orbital (logarithmic scale).

6.3. The H2 molecule

We now simulate, by using the Wigner MC DFT method, a system consisting
of two hydrogen atoms (two fixed positive nuclei and two electrons in motion)
in two different configurations. Initially we suppose that the two nuclei are
far apart and in a second time we put them closer by a distance comparable
to one Angstrom. Given enough time, both configurations evolve towards a
stationary regime. In particular, the appearance of a chemical bond is observable
in the second configuration. For the sake of completeness, the Wigner MC DFT
solutions are compared with the standard DFT based on the (Schrödinger-)
Kohn-Sham system which reads (for two interacting electrons):

ih̄
∂Φ1

∂t
(x, t) =

(

− h̄
2∇2

2m
+ Ueff (x)

)

Φ1 (x, t)

ih̄
∂Φ2

∂t
(x, t) =

(

− h̄
2∇2

2m
+ Ueff (x)

)

Φ2 (x, t) , (75)
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Figure 10: Nuclei potential created by two distant Hydrogenic atoms.

where the effective potential Ueff is given by (58), Uxc is the (LDA) functional
(74), and the Coulombic ions are expressed by (70). The simulation technique
for each equation in (75) is based on the time implicit finite difference method
proposed in [85].

The results for a system made of two far apart hydrogen atoms are reported
in Fig.10, Fig.12, Fig.14 and Fig.16. In particular, Fig.16 shows a comparison
with the standard DFT method. The initial electron density is shown in Fig.12
while the potential is shown in Fig. 10.The system is evolved in time until 50
attoseconds and a stationary solution is already reached at about 4 attoseconds.
The electron probability density at 50 attoseconds is shown in Fig.14. It is clear
that the solution is evolving towards a couple of non-interacting s-shape orbitals.
This is qualitatively in accordance with the fact that the system is expected
to reach a stationary regime, if reasonable initial conditions are imposed (not
too far from equilibrium). The cuts for various densities at 50 attoseconds are
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Figure 11: Nuclei potential created by two close Hydrogenic atoms.

shown in Fig.16 compared to the standard DFT results. The two single-electron
densities are clearly s-shape non-interacting orbitals. Furthermore, the solution
for the total density is quantitatively in agreement with the standard DFT.
The resemblance is striking especially if one thinks that the two methods are
profoundly different (i.e. MC vs. finite differences).

Now the two hydrogen atoms are positioned relatively closer. In this case,
the electron-electron interactions are expected to be important due to the prox-
imity of the nuclei. The system is evolved in time until 50 attoseconds and a
stationary solution is reached at about 5 attoseconds already. The results of
this experiment are reported in Fig.11,Fig.13, Fig.15 and Fig.17. In particu-
lar, Fig.13 shows the initial electron probability density in the total potential
of Fig.11.The corresponding electron density is shown in Fig.15. A bond is
formed between the two atoms as part of the electron density is spread in the
area between the two nuclei. This is clearly shown in Fig.17 where the two
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Figure 12: Initial electron density corresponding to two Gaussian wave packets
in proximity of two distant Hydrogenic nuclei.

single electron probability densities (dotted curves) and the total density (o−
curve) are reported along with the total density obtained from the standard
DFT. Finally, one notes that the solution for the total density is quantitatively
in agreement with the standard DFT. Even in this case, the resemblance is
self-evident.

6.4. Systems of Fermions and the Pauli exclusion principle

We now apply the ab-initio many-body Wigner MC method to a system of
two interacting indistinguishable fermions and show that the Pauli exclusion
principle is naturally taking place into the evolution of the system in the many-
body Wigner formalism. The way it is embedded is by means of the initial
conditions which have to correspond to a system of fermions, i.e. the initial
Wigner function is calculated from an antisymmetric wave-function.
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Figure 13: Initial electron density corresponding to two Gaussian wave packets
in proximity of two close Hydrogenic nuclei.

In particular, the system simulated consists of two identical electrons, trapped
in a one-dimensional box, interacting with each other through their Coulombic
potential. The system starts from the initial conditions

f0W (x1, x2; p1, p2) =
1

(h̄π)2

∫

dx′1dx
′
2e

− i
h̄ (x

′

1
p1+x′

2
p2)

×Ψ0(x1 +
x′1
2
, x2 +

x′2
2
)Ψ∗

0(x1 −
x′1
2
, x2 −

x′2
2
)
)

,

with

Ψ0(x1, x2) =

∣

∣

∣

∣

φ1(x1) φ2(x2)
φ1(x2) φ2(x2)

∣

∣

∣

∣

,
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(Slater determinant, i.e. antisymmetric wave-function) and

φ1(x) = N1e
− 1

2

(

x−x0
1

σ

)

2

eip
0

1
x,

φ2(x) = N2e
− 1

2

(

x−x0
2

σ

)

2

eip
0

2
x,

where N1 and N2 are normalization constants, x01 and x02 are the initial central
positions, p01 and p02 are the initial momenta, for the first and the second wave-
packet respectively, and σ the initial dispersion of the wave-packets. In this
particular experiment, the values x01 = 20 nm, x02 = 30 nm, p01 = +2∆p, p02 =
−2∆p, and ∆p = π

h̄LC
with LC = 20 nm, have been used and the evolution is

performed until time 3.5 fs (a very long final time if compared to the typical
time scale being of the order of a few attoseconds in this context). Finally, the
total length of the spatial domain is equal to 150 nm.

The results of the simulations are reported in Figs. 18 and 19. showing the
evolution of the quantity

∫

dx1dp1fW (x1,x2;p1,p2; t)+
∫

dx2dp2fW (x1,x2;p1,p2; t)
in the phase-space at time 0 fs, 1 fs, 2.5 fs and 3.5 fs respectively.

The two particles start with the same energy but with opposite momenta,
Fig. 18 (top). They proceed one from right to left, the other from left to right
feeling their repulsive Coulombic potential, Fig. 18 (bottom). At time 2.5 fs,
Fig. 19 (top), a Fermi (or exchange-correlation) hole is clearly visible. This is
equivalent to pinching two electrons with same energy against each other and,
accordingly, a lower probability is developed in the central area of the phase-
space, preventing the two particles to be in the same position with the same
energy or, in other words, to be in the same orbital. This is a clear indication
of the presence of the Pauli exclusion principle. Eventually, as the evolution
proceeds in time, the Fermi hole disappears, Fig. 19 (bottom).

6.5. Computational aspects

The simulator used to obtain the results presented in this paper is a modified
version of Archimedes, the GNU package for the simulation of carrier transport
in semiconductor devices [86] which was first released in 2005 under the GNU
Public License (GPL). In this particular project, named nano-archimedes, our
aim has been to develop a full quantum time-dependent simulator. The code
is entirely developed in C and optimized to get the best performance from
the hardware. It can run on parallel machines using the OpenMP standard
library. The results of the present version are posted on the nano-archimedes
website, dedicated to the simulation of quantum systems [87]. The source code
is available as well.

The results have been obtained using the HPC cluster deployed at the Insti-
tute of Information and Communication Technologies of the Bulgarian Academy
of Sciences. This cluster consists of two racks which contain HP Cluster Plat-
form Express 7000 enclosures with 36 blades BL 280c with dual Intel Xeon
X5560 @ 2.8 Ghz (total 576 cores), 24 GB RAM per blade. There are 8 storage
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and management controlling nodes 8 HP DL 380 G6 with dual Intel X5560 @
2.8 Ghz and 32 GB RAM. All these servers are interconnected via non-blocking
DDR Infiniband interconnect at 20Gbps line speed. The theoretical peak per-
formance is 3.23 Tflops.

7. Summary and Future developments

In this review endeavor, we have introduced and explained the Wigner for-
mulation of quantum mechanics. We have shown that it is mathematically
equivalent to the Schrödinger formalism although it allows the treatment of
quantum systems in terms of (quasi-)distribution functions only without in-
volving the concept of wave-functions. We also have shown the mathematical
properties a quasi-distribution must have to describe a physical system. In a
second time, we have introduced a Monte Carlo method for the simulation of
the single-body Wigner equation. This method has been, then, extended to
the frameworks of density functional theory and ab-initio methods for the time-
dependent simulation of the quantum many-body problem. This represents an
important achievement as Monte Carlo methods allow a drastically deep level
of parallelization, opening the way towards time-dependent, full-quantum simu-
lations of complex and relatively large, correlated and non-correlated, chemical
and physical systems. Moreover, we have shown how the Wigner formalism
can be applied in practical calculations. As a first example, we have shown
that the time-independent Wigner equation (∗−genproblem) can be utilized to
study, and intuitively understand, the states of a hydrogen atom. As a second
example, we have applied the Wigner MC DFT method to the simulation of
lithium and boron atoms. Afterwards, the same method has been applied to
the simulation of a H2 molecule in two different configurations. Finally, we
applied the ab-initio many-body Wigner MC method to a system of entangled
particles. These applications clearly demonstrate that it is possible to simulate
practical quantum systems and get insights which cannot be reached by other
formalisms of quantum mechanics.

Clearly, still a lot remains to be explored from both a theoretical and numer-
ical point of view but we think that, based on the promising results reported
in this review, it is a very exciting time for those scientists who want to use
an alternative approach to the standard formulation of quantum mechanics,
accessing the realm of time-dependent quantum simulations of complex objects.
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Figure 19: Time-dependent evolution of the quantity
∫

dx1dp1fW (x,p, t) +
∫

dx2dp2fW (x,p, t) at time 2.5 fs (top) and 3.5 fs (bottom). The formation
of a Fermi hole (also known as an exchange-correlation hole), due to the Pauli
exclusion principle, is clearly visible at time 2.5 fs (top). Eventually the hole
disappears (3.5 fs) as the system evolves (bottom). The x- and y-axes refer to
position and momentum respectively
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