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Abstract

Recently, two approaches were suggested which combine signed particles and
neural networks to speed up the time-dependent simulation of quantum sys-
tems. Both specialize on the efficient computation of a multi-dimensional func-
tion defined over the phase space known as the Wigner kernel. In particular,
as a first step, a completely analytically defined network was proposed, based
on prior physics knowledge and not necessitating any training phase. Then, a
simplified architecture was presented provided with generalization capabilities
and, therefore, requiring a training process. Although relatively simple, these
architectures have shown to provide important advantages in practical appli-
cations. They drastically reduce the amount of memory needed and provide
valuable computational speedup. One quickly notes, though, that both ap-
proaches keep very similar structures and, consequently, are both affected by
the very same issues. For example, they both utilize computationally expensive
activation functions such as the sine functions. In this work, we go beyond neu-
ral networks depicted on physics based motivations and focus on more general
architectures which do not require any prior knowledge. In more details, we
suggest a network consisting of a set of different hidden layers which are based
on more common, and less computationally expensive, activation functions such
as rectified linear units, and which focus on predicting only one column of the
discretized Wigner kernel at a time. This approach requires a training process
to determine its weights and biases, which is performed over a dataset consist-
ing of a position, a potential, and the corresponding column of the kernel at
that position. This newly suggested architecture proves to accurately learn the
transform from the space of potential functions to the space of Wigner kernels
and performs very well during the simulation of quantum systems. Moreover, it
allows a further reduction of the amount of memory required along with a much
lower computational burden ( 20 times faster). To conclude, a validation test is
presented consisting of a one-dimensional Gaussian wave packet impinging on a
potential barrier. Comparisons with another validated approach are provided,
clearly showing the validity of this newly suggested approach.
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1. Introduction

Several years ago, one of the authors of this work introduced a new formu-
lation of quantum mechanics known as the signed particle formulation [1]. This
relatively new formalism is based on the concept of an ensemble of field-less
Newtonian particles, provided with a sign, and which create couples of new par-
ticles according to some probability depending on the so-called Wigner kernel.
Because of its simplicity, and in spite of its recent appearance, this new frame-
work has already been applied with success to the simulation of a relatively big
number of different situations, both in the context of single- and many-body
systems, showing unprecedent advantages in terms of computational resources
[2] (practical examples involving time-dependent simulations of quantum many-
body systems are discussed in [3]-[7]). Even if this innovative approach has
important and unique features, its main bottleneck remains the computation
of the Wigner kernel, which is mandatory to evolve signed particles. In prac-
tice, this function is defined over a phase space which dimensions are equal to
2×N×d, where N is the number of physical bodies involved and d is the dimen-
sion of the real space (d = 1, 2, 3). Therefore, it can quickly become a critical
aspect for the simulation of quantum systems since both the amount of memory
and time required for its computation are cursed by the total dimensionality of
the system or, equivalently, by the dimensionality of the configuration space.

Consequently, the use of Artificial Neural Networks (ANN) to address the
problem of computing the Wigner kernel rapidly and reliably was suggested by
the same author in [8]. In this preliminary investigation, a new technique was
introduced which is based on an appropriately tailored ANN in the context of
the signed particle formalism. The suggested network architecture has the pecu-
liar feature of not requiring any training phase, since mathematical and physical
knowledge of the problem is enough to retrieve the weights and biases analyt-
ically. Although this first approach has shown some important advantages, its
computational complexity remains an issue (see [9] for a complete discussion on
this topic). Subsequently, a more general approach was introduced which uses
a different network architecture and, unlike the previous approach, requires a
training process [9]. This method has the main advantage of reducing the com-
plexity of the previous ANN (since it utilizes less neurons in the hidden layer)
and, therefore, allows a faster computation of the Wigner kernel.

In this work, we present a completely different approach based on more
common techniques coming from the field of machine learning. In particular, we
suggest a new architecture consisting of three hidden layers with neurons which
implement the rectified linear unit (ReLU) as their activations, i.e. a function
which is drastically less demanding in terms of computational resources when
compared to the previously utilized sine activation functions. In order to show
the validity of this new approach, we apply it to the standard problem consisting
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of a one-dimensional Gaussian wave packet going towards a potential barrier.
For the sake of clarity and completeness, comparisons with one of the previously
implemented techniques are presented.

This paper is organized as follows. In the next section, we briefly discuss the
previous techniques which combine the use of signed particles with ANNs. Af-
terwards, we proceed with the description of the new ANN architecture which
radically improves the previous techniques. Finally, a validation test is per-
formed to assess the reliability and speed of the new suggested approach and
conclusive comments are provided. The authors believe that this investigation
represents a further step in the direction of depicting robust, fast and reliable
methods to simulate time-dependent quantum systems, with a potential im-
portant impacts in fields such as quantum chemistry and quantum computing
electronic device design.

2. Neural Network Architectures

In this section, we start by providing the context of the problem we face in
this work. In particular, for the sake of self-consistency, we report the second
postulate on which the signed particle formulation of quantum mechanics is
based. Then, we proceed with a short description of the solutions proposed in
[8] and [9]. Finally, we present a novel ANN architecture which is reliable and
fast but does not carry the computational burden of the previously suggested
techniques.

2.1. The second postulate of the signed particle formulation

The signed particle of quantum mechanics is based on three postulates which
completely determines the time-dependent evolution of an ensemble of signed
particles and, in turn, of a quantum system. In this section, we briefly discuss
about postulate II, which eventually represents the bottleneck of this novel
approach. Postulates I and III have been thoroughly discussed elsewhere and
can be summarized as 1) a quantum system is described by an ensemble of signed
field-less classical particles which completely defines the system (essentially, in
the same way the wave function does), and 3) particles with opposite signs but
equal position and momentum always annihilate. Postulate II, in full details, is
reported below for a one-dimensional, single-body system (for the generalization
to many-dimensional, many-body systems the reader is invited to refer to [2]).

Postulate. A signed particle, evolving in a given potential V = V (x),
behaves as a field-less classical point-particle which, during the time interval dt,
creates a new pair of signed particles with a probability γ (x(t)) dt where

γ (x) =

∫ +∞

−∞
Dp′V +

W (x; p′) ≡ lim
∆p′→0+

+∞∑
M=−∞

V +
W (x;M∆p′) , (1)

3



and V +
W (x; p) is the positive part of the quantity

VW (x; p) =
i

πℏ2

∫ +∞

−∞
dx′e−

2i
ℏ x′·p [V (x+ x′)− V (x− x′)] , (2)

known as the Wigner kernel [10]. If, at the moment of creation, the parent
particle has sign s, position x and momentum p, the new particles are both
located in x, have signs +s and −s, and momenta p+ p′ and p− p′ respectively,

with p′ chosen randomly according to the (normalized) probability
V +
W (x;p)

γ(x) .

Therefore, one can view the signed particle formulation as made of two parts:
1) the evolution of field-less particles, which is always performed analytically,
and 2) the computation of the kernel (2), which is usually performed numerically.
In particular, the computation of the Wigner kernel can, sometimes, represent a
problem in terms of computational implementation as it is equivalent to a multi-
dimensional integral which complexity increases rapidly with the dimensions of
the configuration space. It is clear that a naive approach to this task is not
appropriate (for more technical details the reader is encouraged to visit [16] for
a free implementation of the approach).

We now briefly describe the previously suggested methods of [8] and [9], and
then present our new approach.

2.2. Previous approaches

At a first glance, it might seem relatively simple to train an ANN to predict
the kernel (2) once a potential is provided. In other words, one simply looks
for a map between the space of vectors representing physical potentials and
the space of the corresponding kernels, a rather common problem in machine
learning (usually referred to as supervised learning).

It initially appeared to the authors that a simple naive approach based on a
completely general ANN aiming to learn the mapping by itself would be difficult
to depict and train. Therefore, we first decided to exploit some prior knowledge
to make the problem approachable (interestingly enough, similar conclusions
have been obtained in [11] and [12]). Surprisingly, it was eventually shown
in [8], that by performing some relatively simple algebraic manipulation, it is
possible to obtain such ANN without any training since we are in front of one
rare example of neural network which weights can be found analytically. The
network consists of an input layer, a hidden layer and an output layer. The input
layer receives a discretized position in the phase space, indicated by the couple
of integers (i, j), along with a discretized potential V = V (x), represented by the
vector [V1 = V (x1), . . . , Vn = V (xn)]. To speed up the network, an initial pre-
computation of the angles θl and the corresponding sine functions is performed.
Eventually, these values are utilized to define the activation functions of the
hidden layer and, consequently, an weighted average is computed in the last layer
which represents the output of the network (see [8] for all details). This quite
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uncommon approach brings two important advantages: 1), it completely avoids
the need to compute the Wigner kernel everywhere on the phase-space, 2), the
curse of dimensionality affecting the amount of memory required is completely
removed from the picture. One important drawback remains though since this
network still retains the initial complexity of the problem.

Eventually, in order to give generalization capabilities and, therefore, reduce
the numerical complexity of the problem, an improvement to the previous ap-
proach was suggested based on introducing an arbitrary number of parameters
(in other words, weights and biases) to be learned during a training process [9].
To achieve such goal, one starts from the previous approach and carefully sim-
plifies it to do not loose accuracy. In particular, one introduces the physically
reasonable hypothesis that a given potential can be approximated by a bari-
centric interpolation. Although arbitrary and dependent on the discretization
lenght in the configuration space, this assumption offered a first simple way to
improve our previous approach in terms of generalization and, therefore, nu-
merical performance. Eventually, this interpolation is generalized to a weighted
average of the potential values and the weights are learned by the network dur-
ing the training process. In order to find those values, we search for the weights
which provide the best network approximation of the function VW = VW (x; p)
(representing the dataset) by means of a standard machine learning method
known as stochastic gradient descent.

2.3. Learning how to compute the Wigner kernel

We, now, introduce a new (and very different) approach to the problem of
computing the Wigner kernel by means of a completely general neural network
(i.e. not based on any prior physical knowledge). In more details, the purpose
of this ANN is to learn a mapping f : Rm × I → Rn, which generates a (n-
dimensional) column of the discretized Wigner kernel once a (m-dimensional)
discretized potential and an index in I are provided, and where the index asso-
ciated to the column represents a position in the discretized configuration space.
To achieve it, we use a totally agnostic approach to quantum physics by casting
the problem into a standard supervised learning problem where the mapping is
learned from a finite set of training examples. By using a simple feedforward
neural network, we show that it is possible to learn such a mapping which, in
turn, allows the simulation of quantum systems efficiently and accurately in the
context of the signed particle formulation discussed above.

However, it is well known that, compared to approximating the kernel (2)
by some standard numerical method (e.g. finite differences), the price to pay
consists in not having any theoretical guarantees that the ANN will generalize
well enough for any discretized potential in Rm, or even worse, for all indices
for a given potential. Therefore, we are forced to trade-off this property for
a significant speedup in terms of computational time without losing too much
accuracy. In any case, in the next section, we will empirically demonstrate
that the approximation error is indeed negligible for a large family of physically
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meaningful potentials and, in particular, for the barrier potential (a quintessen-
tial validation test for quantum simulations). In the light of these results, one
can claim that the model used does not only generalize in the statistical sense,
it also learns a very good approximation of the real transformation f .

In more details, to achieve the goal described above, the main effort is rep-
resented by the optimization of two antagonist objectives, i.e. computational
accuracy and speed, by selecting the appropriate ANN architecture. Thus, to
facilitate this task, we restrict the search space of ANN architectures to feedfor-
ward neural networks. This is mainly motivated by their simplicity along with
their ability to easily capture global interactions between the inputs1. Moreover,
for a fixed potential, the diversity of outputs becomes important when we vary
the index, since this diversity is controlled only by changing the index variable.
To increase the influence of this input variable, we encode it as a one-hot vector
and we embed it in a high-dimensional space with five times more entries than
the number of positions, as depicted in Fig. 1. Eventually, this embedding
is transformed again into a hidden representation that is concatenated to the
hidden representation of the potential. Finally, this vector is then processed by
two pairs of rectified linear units (ReLU) followed by a linear transformation
before generating the kernel column. At the end, this model has 19, 550, 233
free parameters (for the case discussed in the next section), and yet it is the
smallest architecture which achieves accurate computations that we were able to
find. Even though the number of parameters might sound quite large at a first
glance, we actually achieve a speedup about 18 times faster than the simplest
finite difference quadrature (such as a C implementation of the midpoint and
the rectangular quadrature methods). In fact, the architecture presented in Fig.
1 can be efficiently implemented on Graphical Processing Units (GPUs), with-
out any effort, with the use of modern deep learning libraries such as Pytorch
[15]. Consequently, most of the computations consists of matrix multiplications
which allows to increase the speedup by using large batches of data at once. On
table 1, we show the average time in milliseconds to compute a whole kernel.
We take into account the initial cost associated to the initialization of the GPU.
This cost is then amortized by computing several columns of a kernel inside a
single batch of data.

3. Numerical validation

In this section, for the sake of completeness, we perform the same validation
test as the one presented in [8] and [9]. In particular, we simulate a repre-
sentative one-dimensional quantum system made of a Gaussian wave packet
moving against a potential barrier positioned at the center of a finite domain

1Interestingly, we also experimented with convolutional neural networks, but their perfor-
mances were not satisfactory to justify their use in a quantum simulation.
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Figure 1: Visual representation of the ANN suggested in this work. The index is represented
by a one-hot vector which selects one column of the embedding. This column is linearly trans-
formed into a larger vector space and concatenated with the potential and, successively, this
new vector is transformed by a composition of linear transformations and ReLU activations.
The hidden representations after the concatenation module all have 2046 dimensions (not
shown on the figure). The circles mean that the module contains parameters.

Figure 2: The learning curve of the model on the training and validation sets. The MSE is
given on a log-scale. After 1500 epochs, we divide the learning rate by ten.

# Potential Avg. time (ms.) Speedup
1 1.69± 0.4 9x
10 0.98± 0.03 15x
25 0.89± 0.03 17x
100 0.84± 0.03 18x

Table 1: Computation time in milliseconds (ms) required to compute a complete Wigner kernel
from a given potential. By gathering several potentials together, the computation time per
potential is amortized because of the efficiency of the GPU for matrix-matrix computations
with high-dimensions. The average and standard deviation are computed over 10 runs. The
reference time for the computation time on the CPU is 15ms.
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Figure 3: Comparison of the mean absolute errors between the training set and the validation
set in absolute (left-hand side) and relative (right-hand side) frequency.

Figure 4: The model is able to generalize to a large range of different potentials obtained by
linear combinations of Gaussian functions.
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Figure 5: The model is able to generalize to an abrupt potential barrier which is not part of
the training set but which can be accurately approximated by narrow Gaussian functions (he
kernel and its prediction are cropped to the region with non-zero values).

(200nm), with width and height equal to 6nm and −0.3eV, respectively. The
initial conditions for this system consists of:

f0
W (x;M) = Ne−

(x−x0)2

σ2 e−
1
ℏ2 (M∆p−p0)

2σ2

(3)

with N , p0, x0 and σ the constant of normalization. As usual, the initial posi-
tion, dispersion and wave number of the packet are equal to 68.5nm, 10nm and
6.28 ·10−2nm−1, respectively. It can be easily shown that this corresponds to an
initial wave packet energy smaller than the energy of the barrier. Consequently,
one expects both reflection and tunneling effects appearing during the time-
dependent simulation. Finally, absorbing boundary conditions are applied at
the edge of the simulation domain. In spite of its simplicity, this numerical ex-
periment represents a solid validation test. Obviously, more complex situations
could be simulated but would be out of the scope of this paper.

Concerning the training process of the neural network, as a starting point,
a dataset must be created. One is readily obtained by, first, discretizing the
position into 200 entries and 20 entries for the momentum. Then, we generate
20, 000 couples of potentials and their corresponding Wigner kernel, and a final
split into a 90 : 10 between the training set and the validation set is applied
randomly. In more details, the potentials are randomly selected from a family
of Gaussian bell shapes with different number of peaks, positioned randomly
and with different dispersions. To validate the training process on such set, we
adopt the standard cross-validation technique where one trains several ANNs on
the training set and select the best one according to the error on the validation
set. Moreover, we use as the final test set a single potential, which belongs to a
completely different family than the one used during the training phase. More
precisely, we test our newly suggested ANN on an abrupt potential barrier.
Consequently, we make sure that the model captures the underlying structure
of the transformation f . By observations on various numerical experiments
performed (see below), we conclude that this procedure is sufficient to stabilize
the loss across different random splits. Moreover, one should note that from a
couple consisting of a potential and its corresponding kernel, one can extract
several training examples, one per column of the kernel. Therefore, in order to
help the optimizer of the training process, we build mini-batches by gathering
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the columns of a kernel sharing the same potential.
The parameters of the model are optimized by means of the well-known

ADAM method [14], which minimizes the Mean Square Error (MSE). In par-
ticular, we use a learning rate equal to 10−4 which we manually decrease after
1500 epochs by one order of magnitude. The size of the minibatch is equal to
10 potentials, which is equivalent to 2000 training examples. The optimizer
minimizes the MSE to 0.0011 on the training set and 0.0041 on the validation
set, as depicted in Fig. 2. The use of ADAM is necessary to obtain low errors
in a reasonable time. 2 Although in the presence of a model with 20M parame-
ters and no regularization term at all, the overfitting proves to be unsignificant.
This can be explained by the large number of training examples used to train
the model. In fact, this is confirmed by comparing the distributions of errors
between the training and the validation sets. As we observe in Fig. 3 (right),
the normalized distributions are hardly distinguishable. Moreover, the distri-
butions are highly skewed towards zero, and 95% of the examples have a mean
absolute error smaller than 0.05. In Fig. 4, the potential input of the model is
fixed and the index varies in order to generate the whole kernel. The kernels
are transposed, so that the model predicts each line of the kernel individually.
We observe that, once the model is parametrized by a fixed potential, it can
generate accurately any position without explicitly using the spatial informa-
tion of the kernel. In Fig. 5, we show the prediction of the model for the
barrier potential described above (the kernel and the prediction are cropped to
the region with non-zero values). One observes that the model is still able to
provide accurate predictions even for low momenta, but loses the structure for
high momenta with a maximum error around 0.35. While this error is high
relatively to the range of values for the kernel, as previously observed in [8] and
[9], the simulation of the physical system is robust to this errors associated to
high momenta. This is mainly due to two factors: on the one hand, the signed
particle formulation is an intrinsically stochastic approach, therefore robust to
noise/perturbations in the kernel, on the other hand, signed particles rarely ex-
plore the area corresponding to high momenta due to trivial energetic reasons.
As a matter of fact, these approximation errors do not have a significant impact
on the simulations as clearly shown in Fig. 6.

4. Conclusions

In this work, we introduced a novel technique combining neural networks and
signed particles to achieve faster, and still reliable, time-dependent simulations
of quantum systems. This newly suggested approach represents an important
generalization over the previous techniques presented in [8] and [9]. In practice,
we depicted a feedforward neural network, i.e. a simple architecture able to
easily capture global interactions between the inputs, and consisting of a layer
embedding the input, encoded as a one-hot vector, in a high-dimensional space

2On a NVIDIA GTX 1080Ti, the training time is less than 1 day.
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with five times more entries than the number of positions, a layer transforming
this embedding into a hidden representation concatenated to the hidden repre-
sentation of the potential and two pairs of ReLU layers processing this vector
followed by a linear transformation (see Fig. 1). Obviously, in this new context,
a trade-off between computational time and accuracy is clearly introduced. In-
terestingly enough, in spite of the simplicity of this model, we are actually able
to achieve a speedup about 18 times faster than the simplest finite difference
quadrature (see table 1). A representative validation test consisting of a wave
packet impinging on a potential barrier has been performed which clearly shows
the validity and accuracy of our newly suggested method in practical situations.

Nowadays, important experiments are being performed in many branches of
the broad field of quantum technologies, such as quantum computing, quantum
chemistry, nanoelectronics, etc. In this promising context, it is clear that our
quantum simulation and design capabilities are going to play a fundamental
role which is going to grow in importance in the next future. Moreover, it
is becoming clear that, to solve modern (and highly challenging) technological
problems related to quantum mechanics, the adoption of dramatically different
approaches is going to be necessary. The authors of this paper believe that the
technique suggested in this work is a promising candidate.
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